The mass of the piece of wood is 35.58 g.
Joule = M × T × C
Where, M = mass
T = change in temperature(42C-23C=19 C)
C = specific heat capacity = 1.716 joules/gram
Substituting the values in the equation,
1160 = M × 19 × 1.716
M = 1160/32.604 = 35.58 g
Therefore, the mass of the piece of wood = 35.58 g
<h3>What is meant by specific heat capacity?</h3>
A material's specific heat capacity, which is defined as its heat capacity divided by its mass, determines how much energy is required to increase a gram's temperature by one degree Celsius (or one Kelvin)
<h3>What is mass?</h3>
Mass is the quantity of matter in a physical body.
To learn more about specific heat capacity visit:
brainly.com/question/1747943
#SPJ4
Answer:
2H2O2(aq)→ 2H2O(l) O2(g) : The oxidation number of oxygen for each compound is -1, -2, 0
Explanation:
In peroxides the oxidation state of oxygen is -1, since one oxygen bonds to the other oxygen and a hydrogen and the bound oxygen captures the electron of the remaining hydrogen. Through a scheme would be
H --- O --- O --- H
We remember that oxygen needs two electrons to get to have the configuration of the nearest noble gas (Lewis octet rule). In Peroxides, the oxygen is linked by covalent bonds. If we take it strictly, peroxide is a grouping of two oxygen, having the whole valence -2. which is why it is usually said that it is when oxygen has a valence -1
As we said the oxidation state is -2, the one that appears in the water molecule, since Hydrogen acts with valence +1 and it is 2 atoms that give up electrons to compensate for oxygen.
In the O2 it acts with valence 0 since we talk about gas in its elementary state. All diatomic molecules in their elemental state, generally gases or metals in solid state, act with a valence of 0.
Electrovalent or ionic bonding
Reduction takes place in cathode while oxidation takes place at the anode.
Given that the reaction 3MnO4- +24H + +5Fe→3Mn+2+5Fe+3+12H2O
Now that oxidation is termed as an increase in oxidation number or loss of electrons while reduction is a decrease in oxidation number and gain of electrons,
∴oxidation will be
Fe→Fe +3+3e-
reduction will
MnO4- +8H+ →Mn+2+4H2O
If oxidation takes place at anode then Anode: an oxidation reaction
Fe→Fe+3+3e- . Then the answer is
Fe(s)→Fe+3(aq)+3e-