Answer: The value of the equilibrium constant Kc for this reaction is 3.72
Explanation:
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for
is written as:
Thus the value of the equilibrium constant Kc for this reaction is 3.72
Answer: -
Concentration of PbI₂ = 1.5 x 10⁻³ M
PbI₂ dissociates in water as
PbI₂ ⇄ Pb²⁺ + 2 I⁻
So PbI₂ releases two times the amount of I⁻ as it's own concentration when saturated.
Thus the molar concentration of iodide ion in a saturated PbI₂ solution = [ I⁻] =
= 1.5 x 10⁻³ x 2 M
= 3 x 10⁻³ M
PbI₂ releases the same amount of Pb²⁺ as it's own concentration when saturated.
[Pb²⁺] = 1.5 x 10⁻³ M
So solubility product for PbI₂
Ksp = [Pb²⁺] x [ I⁻]²
=1.5 x 10⁻³ x (3 x 10⁻³)²
= 4.5 x 10⁻⁹
Answer: Potential energy
Explanation: i hope i wasnt toooo late
The answer is: A) Na3PO4 + 3KOH → 3NaOH + K3PO4, because K retains the same charge throughout the reaction.
This chemical reaction is double displacement reaction - cations (K⁺ and Na⁺) and anions (PO₄³⁻⁻ and OH⁻) of the two reactants switch places and form two new compounds.
Na₃PO₄ is sodium phosphate.
KOH is potassium hydroxide.
NaOH is sodium hydroxide.
K₃PO₄ is potassium phosphate.
According to the mass conservation law, there are same number of atoms on both side of balanced chemical reaction.
P =mgh
You have mass, g =9.8 m/s2 and height calculate the potential energy P