Answer: 0.225 atm
Explanation:
For this problem, we have to use Boyle's Law.
Boyle's Law: P₁V₁=P₂V₂
Since we are asked to find P₂, let's manipulate the equation.
P₂=(P₁V₁)/V₂

With this equation, the liters cancel out and we will be left with atm.
P₂=0.225 atm
B.) Because they both are Acids
Hope this helps!
Answer:
- <u>No, you cannot dissolve 4.6 moles of copper sulfate, CuSO₄, in 1750mL of water.</u>
Explanation:
This question is part of a Post-Lab exercise sheet.
Such sheet include the saturation concentrations for several salts.
The saturation concentration of Copper Sulfate, CuSO₄, indicated in the table is 1.380M.
That means that 1.380 moles of copper sulfate is the maximum amount that can be dissolved in one liter of solution.
Find the molar concentration for 4.6 moles of copper sulfate in 1,750 mL of water.
You need to assume that the volume of water (1750mL) is the volume of the solution. This is, that the 4.6 moles of copper sulfate have a negligible volume.
<u>1. Volume in liters:</u>
- V = 1,750 mL × 1 liter / 1,000 mL = 1.75 liter
<u />
<u>2. Molar concentration, molarity, M:</u>
- M = number of moles of solute / volume of solution in liters
- M = 4.6 moles / 1.75 liter = 2.6 M
Since the solution is saturated at 1.380M, you cannot reach the 2.6M concentration, meaning that you cannot dissolve 4.6 moles of copper sulfate, CuSO₄ in 1750mL of water.
Answer:
MgCl2 > C4H9OH > CH4 > C3H8.
Explanation:
Alkanes do not form hydrogen bonds and are insoluble in polar solvents e.g water. The hydrogen bonds between water molecules are move away from an alkane molecule and this worsens as their Carbon chain / molecular weight increases.
MgCl2 is soluble in water. Water essentially breaks down the ionic crystal lattice and the resulting solution is slightly basic.
Alcohols are generally soluble in water and this is because of the -OH group and its ability to form hydrogen bonds with water molecules. As applied to alkanes, as the carbon chain in the alkyl group increases, the solubility decreases.
From the most soluble to the least soluble,
MgCl2 > C4H9OH > CH4 > C3H8.