1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
3 years ago
13

6. Matter with a definite volume but no definite shape is a A gas B. solid C.liquid

Chemistry
1 answer:
Nonamiya [84]3 years ago
3 0

Answer:

Liquid

Explanation:

You might be interested in
What is the difference between a suspension, a colloid, a solution, and an emulsion?
Len [333]

Suspension is defined as the heterogeneous mixture in which solute particles suspended throughout the bulk of the particles. The particle size is more than 100 nm. In suspension, particles don't pass through filter paper. Sand in water is an example of suspension.

Colloid is defined as a mixture (heterogeneous and homogeneous) in which one substance of dispersed insoluble particles get suspended throughout other substance. The particle size is 1 to 100 nm. In colloid, particles are small, thus pass through filter paper. The particles of air which is dispersed in solid stone is an example colloid.

Emulsion is a mixture of two or more substance which are immiscible in nature. It is a part of colloid. Milk is an example of emulsion.

Solution is a homogeneous mixture with clear or transparent appearance. The particle size in solution is 10^{-7}-10^{-8}cm i.e. molecule in size. There is no effect of light occurs in the solution and solution can't filtered but can separated by the physical technique i.e. distillation.

5 0
3 years ago
Read 2 more answers
Your job is to determine the concentration of ammonia in a commercial window cleaner. In the titration of a 25.0 mL sample of th
ruslelena [56]

Answer:

The initial concentration of ammonia is 0.14 M and the pH of the solution at equivalence point is 5.20

<u>Explanation:</u>

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}      .....(1)

Molarity of HCl solution = 0.164 M

Volume of solution = 23.8 mL = 0.0238 L    (Conversion factor:  1 L = 1000 mL)

Putting values in equation 1, we get:

0.164M=\frac{\text{Moles of HCl}}{0.0238L}\\\\\text{Moles of HCl}=(0.146mol/L\times 0.0238L)=0.0035mol

The chemical equation for the reaction of ammonia and HCl follows:

NH_3+HCl\rightarrow NH_4^++Cl^-

By Stoichiometry of the reaction:

1 mole of HCl reacts with 1 mole of ammonia

So, 0.0035 moles of HCl will react with = \frac{1}{1}\times 0.0035=0.0035mol of ammonia

  • Calculating the initial concentration of ammonia by using equation 1:

Moles of ammonia = 0.0035 moles

Volume of solution = 25 mL = 0.025 L

Putting values in equation 1, we get:

\text{Initial concentration of ammonia}=\frac{0.0035mol}{0.025L}=0.14M

By Stoichiometry of the reaction:

1 mole of ammonia produces 1 mole of ammonium ion

So, 0.0035 moles of ammonia will react with = \frac{1}{1}\times 0.0035=0.0035mol of ammonium ion

  • Calculating the concentration of ammonium ion by using equation 1:

Moles of ammonium ion = 0.0035 moles

Volume of solution = [23.8 + 25] mL = 48.8 mL = 0.0488 L

Putting values in equation 1, we get:

\text{Molarity of ammonium ion}=\frac{0.0035mol}{0.0488L}=0.072M

  • To calculate the acid dissociation constant for the given base dissociation constant, we use the equation:

K_w=K_b\times K_a

where,

K_w = Ionic product of water = 10^{-14}

K_a = Acid dissociation constant

K_b = Base dissociation constant = 1.8\times 10^{-5}

10^{-14}=1.8\times 10^{-5}\times K_a\\\\K_a=\frac{10^{-14}}{1.8\times 10^{-5}}=5.55\times 10^{-10}

The chemical equation for the dissociation of ammonium ion follows:

NH_4^+\rightarrow NH_3+H^+

The expression of K_a for above equation follows:

K_a=\frac{[NH_3][H^+]}{[NH_4^+]}

We know that:

[NH_3]=[H^+]=x

[NH_4^+]=0.072M

Putting values in above expression, we get:

5.55\times 10^{-10}=\frac{x\times x}{0.072}\\\\x=6.32\times 10^{-6}M

To calculate the pH concentration, we use the equation:

pH=-\log[H^+]

We are given:

[H^+]=6.32\times 10^{--6}M

pH=-\log (6.32\times 10^{-6})\\\\pH=5.20

Hence, the initial concentration of ammonia is 0.14 M and the pH of the solution at equivalence point is 5.20

5 0
3 years ago
A Lewis structure is a two-dimensional representation of a molecule that does not necessarily show what shape that molecule woul
Dmitry [639]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The bond angle is 104.48⁰

Explanation:

The explanation is shown on the second uploaded image

4 0
3 years ago
THIS IS DUE TODAY IF YOU HELP I WILL GIVE BRAINLIEST
sp2606 [1]

Answer:19. He says that he’s been really tired since several weeks ago. 20. A friend of us is going to pick us up at the airport. 21. I’ve worked like a waiter in the past, but I wouldn’t want to do it again. 22

Explanation:

7 0
2 years ago
Find the pH of a 0.100 molar H2C6O6 solution with ka, where KA is equal 8.0×10–5​
lubasha [3.4K]

The pH of the solution is 2.54.

Explanation:

pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.

The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.

So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the

K_{a}=\frac{[H^{+}][HB] }{[reactant]}

[HB] is the concentration of base.

8 * 10^{-5} =\frac{x^{2}  }{0.1}\\\\\\x^{2} = 8 * 10^{-5}*0.1

x^{2} = 0.08 * 10^{-4}\\ \\x = 0.283*10^{-2}

Then

pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54

So the pH of the solution is 2.54.

4 0
3 years ago
Other questions:
  • Which correctly describes the laws of conservation?
    13·1 answer
  • Which coefficients are required to correctly balance this equation? C2H2+O2 CO2+H2O
    9·1 answer
  • Lars is balancing equations with his study group. He is unsure about one equation because each member of the study group came up
    13·2 answers
  • Which of the following is NOT an effect of a solar flare? A. Magnetic storms B. Eruptions of charged particles C. The energy cre
    12·2 answers
  • Phosphorus pentachloride reacts with water to form hydrochloric acid and phosphoric acid. How many total moles of acid are forme
    12·1 answer
  • ANSWER ASAP thanks
    14·2 answers
  • What is one difference between Group 2 and Group 15 of the Periodic Table of Elements?
    7·1 answer
  • What is the chemical name for OBr2?
    10·1 answer
  • Given that a 3cm lenght of magnesium weights approximately 0.04g, calculate the number of moles of acid that reacted with the 9c
    11·1 answer
  • A buffer was prepared by mixing 1.00 mole of ammonia and 1.00 mole of ammonium chloride to form an aqueous solution with a total
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!