Answer:
75 km/h
Explanation:
Speed = Distance divided by Time.
The train went a distance of 300 km in 4 hours. Therefore, the speed of the train is: 300 divided by 4 = 75 km/h
<span>-- the product of the net charges on the objects;. -- the distance between the centers of their net charges. (Pretty much identical to the formula for gravitational force)</span>
Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts
Answer:
Energy of Photon = 4.091 MeV
Explanation:
From the conservation of energy principle, we know that total energy of the system must remain conserved. So, the energy or particles before collision must be equal to the energy of photons after collision.
K.E OF electron + Rest Energy of electron + K.E of positron + Rest Energy of positron = 2(Energy of Photon)
where,
K.E OF electron = 3.58 MeV
Rest Energy of electron = 0.511 MeV
Rest Energy of positron = 0.511 MeV
K.E OF positron = 3.58 MeV
Energy of Photon = ?
Therefore,
3.58 MeV + 0.511 MeV + 3.58 MeV + 0.511 MeV = 2(Energy of Photon)
Energy of Photon = 8.182 MeV/2
<u>Energy of Photon = 4.091 MeV</u>
Answer:
v = 10 m/s
Explanation:
given,
Mass of Mercedes engine = 2000 Kg
Power delivered = 100 kW
angle made with horizontal = 30°
acceleration due to gravity = 10 m/s²
largest speed car can sustain = ?
we know,
Power = Force x velocity
P = F x v
P = mg sinθ x v
P = mg sin 30° x v
P = 0.5 mg x v

v = 10 m/s
hence, the maximum velocity is equal to v = 10 m/s