Answer:
It is easier to scale the voltage of AC from high to low and low to high than with DC
Explanation:
typically power is used far away from the place where it's generated so to ensure that transmission losses( copper losses) are minimized voltage has to be stepped up during transmission..but due to the fact that most house hold equipment requires low voltage levels it has to be stepped down once it reaches a household/ domestic load...it's easier to do this for Ac than for DC.
Okay, first off, the formula for Kinetic Energy is:
<em>KE = 1/2(m)(v)^2</em>
<em>m = mass</em>
<em>v = velcoity (m/s)</em>
Using this formula, we can then calculate the kinetic energy in each scenario:
1) KE = 1/2(100)(5)^2 = 1,250 J
2) KE = 1/2(1000)(5)^2 = 12,500 J
3) KE = 1/2(10)(5)^2 = 125 J
4) KE = 1/2(100)(5)^2 = 1,250 J
Ability to memorize and regurgitate information on tests is the skill that can’t help a person to thrive today in this modern 21st century.
Answer: Option D
<u>Explanation:</u>
Thriving in this modern 21st century is not as easy as it used to be in the early 20th and 19th centuries. So there is a need to develop skills like implementing one's knowledge to real-world structures which will sure help a person to understand and explore more.
Statement B also will sure be helpful to survive in modern society and a person can also improve his/her critical thinking, problem solving and other skills to thrive through this century.
But even though memorizing and regurgitating information can help you get good grade it will never be that helpful in other ways, So option D can be concluded as the right answer.
Answer:
Explanation:
Using the equation of motion v = u + at to get the speed at which the object would be travelling.
v is the final speed (in m/s)
u is the initial velocity (in m/s)
a is the acceleration (in m/s²)
t is the time taken (in secs)
Given parameters
u = 0m/s
t = 10s
a = g = 9.8m/s²
Substituting this values into the formula;
v = 0+9.8(10)
v = 0+ 98
v = 98m/s
<em>Hence the rock will be travelling at a speed of 98m/s.</em>
In a direct current (DC) electrical circuit, the voltage (V in volts) is an expression of the available energy per unit charge which drives the electric current (I in amperes) around a closed circuit. Increasing the resistance (R in ohms) will proportionately decrease the current which may be driven through the circuit by the voltage.
Each quantity and each operational relationship in a battery-operated DC circuit has a direct analog in the water circuit. The nature of the analogies can help develop an understanding of the quantities in basic electric ciruits. In the water circuit, the pressure P drives the water around the closed loop of pipe at a certain volume flow rate F. If the resistance to flow R is increased, then the volume flow rate decreases proportionately. You may click any component or any relationship to explore the the details of the analogy with a DC electric circuit.