Yes, it can be unicellular and multicellular
The time lapse between when the bat emits the sound and when it hears the echo is 0.05 s.
From the question given above, the following data were obtained:
Velocity of sound (v) = 343 m/s
Distance (x) = 8.42 m
Time (t) =?
We can obtain obtained the time as illustrated below:
v = 2x / t
343 = 2 × 8.42 / t
343 = 16.84 / t
Cross multiply
343 × t = 16.84
Divide both side by 343
t = 16.84/343
t = 0.05 s
Thus, the time between when the bat emits the sound and when it hears the echo is 0.05 s.
<h3>
How does a bat know how far away something is?</h3>
A bat emits a sound wave and carefully listens to the echoes that return to it. The returning information is processed by the bat's brain in the same way that we processed our shouting sound with a stopwatch and calculator. The bat's brain determines the distance of an object by measuring how long it takes for a noise to return.
Learn more about time elapses between when the bat emits the sound :
<u>brainly.com/question/16931690</u>
#SPJ4
Correction question:
A bat emits a sonar sound wave (343 m/s) that bounces off a mosquito 8.42 m away. How much time elapses between when the bat emits the sound and when it hears the echo? (Unit = s)
Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m
Answer:Explanation:gfgfgfgfgfgfgfgfgfg
Answer:
7.72 Liters
Explanation:
normal body temperature = T_body =37° C
temperature of ice water = T_ice =0°c
specfic heat of water = c_{water} =4186J/kg.°C
if the person drink 1 liter of cold water mass of water is = m = 1.0kg
heat lost by body is Qwater =mc_{water} ΔT
= mc{water} ( T_ice - T_body)
= 1.0×4186× (0 -37)
= -154.882 ×10^3 J
here negative sign indicates the energy lost by body in metabolic process energy expended due to brisk - hour long walk is Q_{walk} = 286 kilocalories
= 286×4186J
so number of liters of ice water have to drink is
n×Q_{water} =Q_{walk} n= Q_{walk}/ Q_{water}
= 286×4186J/154.882×10^3 J
= 7.72 Liters