1- metal and non metal
2- true
3- chlorine
Answer:
14.5 g silver
Explanation:
This is a problem using the stoichiometry of the reaction. First thing we need is the balanced equation:
Zn + 2 AgNO3 ----------------------- 2 Ag + Zn(NO3)2
We know that 14.6 g of Zn did not reacted, then we can calculate the amount of Zn reacted and do the calculation given the above reaction.
amount Zn reacted: 19.0 -14.6 g Zn = 4.4 g Zn
atomic weight of Zn: 65.37 g/mol
mol Zn reacted: 4.4 g Zn x ( 1 mol Zn/ 65.37 g Zn) = 0.067 mol Zn
We know from the balanced equation that moles of Ag are produced from 1 mol Zn therefore the mol of Ag produced are:
0.067 mol Zn x 2 mol Ag/ 1mol Zn = 0.135 mol Ag
and the mass of silver then will be given by multiplying by the atomic weight of silver:
0.135 mol Ag x 107.9 g/mol = 14.5 g Ag
Answer: 48800g
Explanation:
Using the mathematical relation : Moles = Mass / Molar Mass
Moles = 488
Molar mass of CaCO3 = 40 + 12 + (16 x 3) = 100g/mol
Therefore
488 = mass / 100 = 48800g
Answer:
2.78 x 10²³
Explanation:
1 mole contains 6.02 x 10²³ hydrogen atoms => 0.46 mole contains 0.46(6.02 x 10²³) hydrogen atoms or 2.78 x 10²³ atoms.
Caution => When to use H vs H₂ => This problem is specific for 'hydrogen atoms' but some may simply say hydrogen. In such cases use H₂ or 'molecular hydrogen' is the focus. it's a matter of semantics, H vs H₂.
Answer:
1.44 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of HCl = 0.06 mole
Mass of Mg =?
From the question given above, we discovered the number of mole of HCl is equivalent to the number of mole of Mg. Thus,
Number of mole of Mg = number of mole of HCl
Number of mole of Mg = 0.06 mole
Finally, we shall determine the mass of Mg. This can be obtained as follow:
Number of mole of Mg = 0.06 mole
Molar mass of Mg = 24 g/mol
Mass of Mg =?
Mass = mole × molar mass
Mass of Mg = 0.06 × 24
Mass of Mg = 1.44 g
Therefore, the mass of magnesium is 1.44 g