1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
2 years ago
5

A person pulls a box across the floor with a rope. The rope makes an angle of 40 degrees tot he horizontal, and a total of 125 n

ewtons of force is applied. How much work is done if the box is pulled for 25 meters?
Physics
1 answer:
RSB [31]2 years ago
3 0

Answer:

The angle formed of the rope with the surface = 40°

Force applied = 125Newtons

The displacement covered by the box =25metres

W= FDcos theta

[125×40×cos(40°) ] Joules

= [ (3125×0.76604444311)]Joules

= 2393.88888472 joules(ans)

Hope it helps

You might be interested in
An experimental apparatus has two parallel horizontal metal rails separated by 1.0 m. A 3.0 Ω resistor is connected from the lef
Blizzard [7]

Answer:

The induced current and the power dissipated through the resistor are 0.5 mA and 7.5\times10^{-7}\ Watt.

Explanation:

Given that,

Distance = 1.0 m

Resistance = 3.0 Ω

Speed = 35 m/s

Angle = 53°

Magnetic field B=5.0\times10^{-5}\ T

(a). We need to calculate the induced emf

Using formula of emf

E = Blv\sin\theta

Where, B = magnetic field

l = length

v = velocity

Put the value into the formula

E=5.0\times10^{-5}\times1.0\times35\sin53^{\circ}

E=1.398\times10^{-3}\ V

We need to calculate the induced current

E =IR

I=\dfrac{E}{R}

Put the value into the formula

I=\dfrac{1.398\times10^{-3}}{3.0}

I=0.5\ mA

(b). We need to calculate the power dissipated through the resistor

Using formula of power

P=I^2 R

Put the value into the formula

P=(0.5\times10^{-3})^2\times3.0

P=7.5\times10^{-7}\ Watt

Hence, The induced current and the power dissipated through the resistor are 0.5 mA and 7.5\times10^{-7}\ Watt.

6 0
3 years ago
Read 2 more answers
The speed of an object changes only when it is acted on by an unbalanced force.
Nikitich [7]

Answer:

If an object has a net force acting on it, it will accelerate. The object will speed up, slow down or change direction. An unbalanced force (net force) acting on an object changes its speed and/or direction of motion. An unbalanced force is an unopposed force that causes a change in motion.

Explanation:

I hope this helps you out and if your feeling generous plz mark brainliest it helps me a lot thank you:)

6 0
3 years ago
Which vector goes from (-1, -3) to (-4, -1)
Alisiya [41]
Its this (couldn’t write it down on here properly so i had to ss it)
Basically, it’s just the difference between the x values at the top and the difference between the Y values at the bottom.

6 0
2 years ago
A cyclist rides at 6.20 m/s through a intersection. A stationary car begins to
Xelga [282]

Answer:

The width of the intersection is 20 meters

Explanation:

The speed with which the cyclist is riding, v₁ = 6.20 m/s

The rate at which the car starts to accelerate, a = 3.844 m/s²

The initial velocity of the car = The car is stationary at the start = 0 m/s

The time at which the cyclist and the car reach the other side of the intersection = The same time;

Let 't' represent the time at which the cyclist and the car both reach the other side of the intersection, we have;

The distance travelled by the cyclist = The distance traveled by the car

∴ v₁ × t = 1/2 × a × t²

Plugging in the values for 'v₁', and 'a' in the above equation, we get;

6.20 × t = 1/2 × 3.844 × t²

∴ 1.922·t² - 6.20·t = 0

∴ t·(1.922·t - 6.20) = 0

t = 0, or t = 6.20/1.922 = 100/31

The time at which the cyclist and the car both reach the other side of the intersection, t = 100/31 seconds

The with of the intersection, w = v₁ × t

∴ w = 6.20 × 100/31 = 100/5 = 20

The width of the intersection, w = 20 meters.

8 0
3 years ago
If it is fixed at C and subjected to the horizontal 60-lblb force acting on the handle of the pipe wrench at its end, determine
pickupchik [31]

Answer:

τ = 132.773 lb/in² = 132.773 psi

Explanation:

b = 12 in

F = 60 lb

D = 3.90 in (outer diameter)  ⇒ R = D/2 = 3.90 in/2 = 1.95 in

d = 3.65 in (inner diameter)  ⇒ r = d/2 = 3.65 in/2 = 1.825 in

We can see the pic shown in order to understand the question.

Then we get

Mt = b*F*Sin 30°

⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in

Now we find ωt as follows

ωt = π*(R⁴ - r⁴)/(2R)

⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)

⇒ ωt = 2.7114 in³

then the principal stresses in the pipe at point A is

τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)

⇒ τ = 132.773 lb/in² = 132.773 psi

7 0
3 years ago
Other questions:
  • Which scenario best describes motion? a toy train in position 4 on a number line a race track that is 100 meters long a ball rol
    12·2 answers
  • The speed of all electromagnetic waves is 3.00 × 108 meters per second. What is the wavelength of an X-ray with a frequency of 1
    5·2 answers
  • Which of the following is an example of how a scientist might use a model?
    15·2 answers
  • In an inertia balance, a body supported against gravity executes simple harmonic oscillations in a horizontal plane under the ac
    13·1 answer
  • How long will it take a shell fired from a cliff at an initial velocity of 800 m/s at an angle 30 degrees below the horizontal t
    12·1 answer
  • Visible light travels at a speed 3.0 × 108 of m/s. If red light has a wavelength of 6.5 × 10–7 m, what the frequency of this lig
    11·2 answers
  • Behavior that benefits others is called behavior
    5·1 answer
  • An object is moving to the right in a straight line. The net force acting on the object is also directed to the right, but the m
    5·1 answer
  • What is the speed of a runner that runs 400m in 48.42 seconds?
    10·1 answer
  • Which describes Einstein’s second postulate about the special theory of relativity? The speed of light in a vacuum is constant,
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!