Answer:
The two possible thicknesses of the soap bubble is 129 nm and 389 nm.
Explanation:
Given that,
Wavelength = 690 nm
Refractive index = 1.33
We need to calculate the two possible thicknesses of the soap bubble
Using formula of thickness

For m = 0,
Put the value into the formula



For m=1,
Put the value into the formula



Hence, The two possible thicknesses of the soap bubble is 129 nm and 389 nm.
The answer is c because I had the same thing and it was right
For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative.
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct.
For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
</span>
Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here
Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)
Answer:
Resultant Force=33.8 lb
Angle=67.2°
Explanation:
Given data
Fa=22 lb
Fb=16 lb
Θ=55⁰
To find
(i) Resultant Force F
(ii)Angle α
Solution
First we need to represent the forces in vector form

Total Force

The Resultant Force is given as

For(ii) angle
We can find the angle bu using tanα=y/x
So
