The space station completes 2 revolutions each minute, so that it traverses a distance of 2<em>π</em> (100 m) = 200<em>π</em> m each minute, giving it a linear/tangential speed of
<em>v</em> = (200<em>π</em> m) / (60 s) ≈ 10.472 m/s
(a) The astronaut would experience an acceleration of
<em>a</em> = <em>v</em> ² / (100 m) ≈ 1.09662 m/s² ≈ 0.1119<em>g</em> ≈ 0.11<em>g</em>
<em />
(b) Now you want to find the period <em>T</em> such that <em>a</em> = <em>g</em>. This would mean the astronaut has a tangential speed of
<em>v</em> = (200<em>π</em> m) / <em>T</em>
so that her centripetal/radial acceleration would match <em>g</em> :
<em>a</em> = <em>g</em> = ((200<em>π</em> m) / <em>T </em>)² / (100 m)
Solve for <em>T</em> :
(100 m) <em>g</em> = (400<em>π</em> ² m²) / <em>T</em> ²
<em>T</em> ² = (400<em>π</em> ² m²) / ((100 m) <em>g</em>) = (4<em>π</em> ² m)/<em>g</em>
<em>T</em> = √((4<em>π</em> ² m) / (9.8 m/s²)) ≈ 2<em>π</em> √(0.102 s²) ≈ 2.007 s ≈ 2.0 s