Answer
given,
mass of ball = 5.93 kg
length of the string = 2.35 m
revolve with velocity of 4.75 m/s
acceleration due to gravity = 9.81 m/s²
T cos θ = mg
T cos θ = 
T cos θ = 58.17






T² - 56.93T - 3383.75 = 0
T = 93.22 N

θ = 51.39°
Answer:
29.4855 grams of chlorophyll
Explanation:
From Raoult's law
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 457.45 mmHg ÷ 463.57 mmHg = 0.987
Mass of solvent (diethyl ether) = 187.4 g
MW of diethyl ether (C2H5OC2H5) = 74 g/mol
Number of moles of solvent = mass/MW = 187.4/74 = 2.532 mol
Let the moles of solute (chlorophyll) be y
Total moles of solution = moles of solute + moles of solvent = (y + 2.532) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.987 = 2.532/(y + 2.532)
y + 2.532 = 2.532/0.987
y + 2.532 = 2.565
y = 2.565 - 2.532 = 0.033
Moles of solute (chlorophyll) = 0.033 mol
Mass of chlorophyll = moles of chlorophyll × MW = 0.033 × 893.5 = 29.4855 grams
Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
Answer: They have different rigidities.
Explanation: