Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain

The right<span> at +20.0 </span>cm/s makes<span> an </span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that </span>makes<span> an</span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that is </span>initially<span> at </span>rest<span>.(b) Find the fraction of the </span>initial<span>kinetic energy transferred to the 10.0 </span>g object<span>.of small </span>mass<span> before and </span>after collision; V=velocity<span> of big </span>mass after collision<span>.</span>
Answer:
4.25 s
Explanation:
Given:
angular acceleration'α'= 1.8 rad/s²
angle 'θ'= 45 rad
time 't'= 4s
initial angular velocity '
'=0
as we know that,
θ=
t + 
45 = 4
+ (0.5 x 1.8 x 16)
45- 14.4 = 4 
30.6 = 4 
= 7.65 
Next is to find t by using the equation
=
+ 
7.65= 0 + (1.8)
= 7.65/1.8
= 4.25 s
Therefore, At the start of 4s interval the motion is at 4.25 second