Write out the eqn of magnesium and oxygen. this should be under “metals” chapter. do revise.
next, find the mols of both oxygen and magnesium. compare the ratios and find the LIMITING REAGENT.
use the mols of the limiting reagent to compare with the mols of the product.
take the mols of the product/mr of the product.
this will give u the mass.
To answer the problem above first we need to find the difference of molar mass of NI3 from I2, 394.71 g/mol - 253.80 g/mol = 140.91 g/mol. Knowing the molar mass of the difference of NI3 from I2, in equation mass (g) / moles (mol) = molar mass, then we substitute. 3.58g / moles = 140.91 g/mol.
moles = 3.58 / 140.91 = 0.025 moles.
Answer:
Calcium carbonate reacts with hydrochloric acid to form carbon dioxide gas. 2HCl (aq) + CaCO 3(s) CaCl 2 (aq) + CO 2(g) + H 2 O (l).
1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Answer and Explanation:
Ions are electrically charged particles that are formed from the removing and addition of electrons. It can be a positively or negatively charged atom.