Answer:
v₂ = 22.5 m/s
Explanation:
Given that
For puck 1
m₁= 1 kg
u₁= 30 m/s
For puck 2
m₂= 1 kg
u₂= 0 m/s
After collision
Puck 1 have velocity v₁=7.5 m/s
Take puck 2 will have velocity v₂
From linear momentum conservation
P₁=P₂
m₁ u₁+m₂ u₂=m₁ v₁+m₂ v₂
1 x 30 + 1 x 0 = 1 x 7.5 + 1 x v₂
30 - 7.5 =v₂
v₂ = 22.5 m/s
Answer:
a) Current.
Explanation:
The "junction rule" (Kirchhoff's first law) says that the value of the electric current entering any point in the circuit must be the same as the one leaving it. This comes as a consequence of the conservation of charge, the electric charge that comes in must come out (when speaking about currents, per unit time).
Answer:
moving slowly is the answer
Answer: 7.78m/s
Explanation: As the the skier slide down the height, we assume the motion of a body, slidind down an incline plane.
Force down the plane= [email protected]
Frictional force= umg
u= coefficient of friction
Net force on skier = [email protected] umg
ma = [email protected]
a = g([email protected] - u) = 9.8 (sin 25- 0.2)
a = 9.8 × (0.4226-0.2) = 9.8 × 0.2226
a = 2.18m/s²
Using the formula V² = U² + 2aH
Where H = (10.4+ 3.5)=total height of descent before landing, U= 0.
V = √ 2 × 2.18× 13.9 = √60.604
V = 7.78m/s
<h3><u>Answer</u> :</h3>
<u>Focal length of convex lens is taken positive.</u>




