Answer:
A. The project's energy costs will decrease
Explanation:
Since the project is located in an area with a demand-response program and on a site that has enough room for a wind-turbine to allow for on-site renewable energy.
Hence, the project's energy costs will decrease very well because it's implementing both of these strategies;
- Area with demand-response program.
- On-site renewable energy.
Answer: 15m/s
Explanation: <u>Average</u> <u>Velocity</u> is vector describing the total displacement of an object and the time taken to change its position. It is represented as:

At t₁ = 1.0s, displacement x₁ is:

x(1) = 28
At t₂ = 4.0s:

x(4) = 73
Then, average speed is

v = 15
The average velocity of a car between t₁ = 1s and t₂ = 4s is 15m/s
Answer:
0.488 m
Explanation:
If θ be the angle ladder makes with the plane
cos θ = 1.2 / 5
Tan θ = 4.04
Let the height a person of weight 600 N can climb be h from the ground .
Distance from the base point where ladder touches the floor = h / tanθ
= h / 4.04
Total reaction force = total downward force
R = 200 + 600
800 N
Frictional force = μ R
= .2 x 800
= 160 N
Taking moment of force about the point on the ladder where it touches the floor and balancing them
200 x 1.2 x .5 + 600 x h / tanθ = μ R x 1.2 / tanθ ( reaction at the top point of ladder where it touches the wall is R₁ and
R₁ =μ R )
= 200 x 1.2 x .5 + 600 x h / tanθ = 160 x 1.2 / tanθ
120 - 600 h / 4.04 = 47.52
120 - 47.52 = 600 h / 4.04
72.48= 148.51 h
h = 0.488 m
=
Complete Question:
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
Answer:
m = 0.001 M
For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/