Elliptical orbit.<<<<<<<<<<
The friction force between the box and the incline if the box does not slide down the incline will be 0.577
The force preventing sliding against one another of solid surfaces, fluid layers, and material components is known as friction. There are several kinds of friction: Two solid surfaces in touch are opposed to one another's relative lateral motion by dry friction.
Given the box resting on the inclined plane above has a mass of 20kg and the The incline sits at a 30 degree angle
We have to find the friction force between the box and the incline if the box does not slide down the incline
Since the frictional force F₁ must equal or exceed gravitational force F₂ down the incline:
F₁ = F₂
μmgcosΘ = mgsinΘ
μ = (mgsinΘ)/(mgcosΘ)
μ = tanΘ
μ = 0.577
Hence the friction force between the box and the incline if the box does not slide down the incline will be 0.577
Learn more about friction force here:
brainly.com/question/24386803
#SPJ4
Ernest Rutherford is the answer you are looking for my friend.
Answer:
energy per unit charge
Explanation:
EMF is energy per unit charge and has unit joule/ coulomb, where joule is unit of energy and coulomb is the unit of charge.
The potential difference between points a and b is zero.
<h3>Total emf of the series circuit</h3>
The total emf in the circuit is the sum of all the emf in the circuit.
emf(total) = 1.5 + 1.5 = 3.0 V
<h3>Potential difference</h3>
The potential difference between two points, a and b is calculated as follows;
V(ab) = Va - Vb
V(ab) = 1.5 - 1.5
V(ab) = 0
Thus, the potential difference between points a and b is zero.
Learn more about potential difference here: brainly.com/question/3406867