Answer:
The formula comes from Lorentz force law which includes both the electric and magnetic field. If the electric field is zero, the force law for just the magnetic field is <u>F=q(ν×B</u>) . Here, F is force and is a vector because the force acts in a direction. q is the charge of the particle. v is velocity and is a vector because the particle is moving in some direction. B is the magnetic flux density.
We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd. Since the magnitude of B is constant at every line element of the loop (circle) and it dot product with the line element is B dl everywhere, therefore
∮B dl=μ0 I
B ∮dl=μ0 I
B 2πr=μ0 I
B=μ02πr Id=μ0/4π I dl×rr3
Since, r can be written as r=(rcosθ,rsinθ,z) and dl as dl=(dl,0,0) And now, if we take the cross product we would get
dl×r=−z dlj^+rsinθk^
and therefore the magnitude of dB is equal to
dB=μ0/4π I |dl×r|/r3=μ0/4π I z2+r2sin2θ−−−−−−−−−−√dl/r3
Thus, magnetic field is depending on r,θ,z.
Learn more about Force here-
brainly.com/question/2855467
#SPJ4
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
Transverse wave = at right angles to the direction of the motion of the wave
in transverse wave medium particles will move perpendicular to the direction of motion of medium particles
they all are perpendicular to wave always
Longitudinal wave = back and forth in the direction of the motion of the wave
in longitudinal waves medium particles will move in the direction of wave and the motion is always in back and forth type
electromagnetic wave = alternating waves moving at right angles to each other
electromagnetic waves are combination of electric field and magnetic field which oscillates perpendicular to wave as well as they are perpendicular to each other
The molecules which evaporate presumably take heat away from the liquid. So, I'd disagree with the classmate. Whether the amount of cooling would differ from the usual case wherein the molecules have different speeds is another question.
I guess the argument goes something along the lines of that the faster moving and therefore most kinetically energetic molecues evaporate and take away most heat. But if there's no faster moving molecules, 'cos they all have the same speed well, then presumably they'd all take away the same amount of heat. So, maybe the cooling would be less. No cooling though ??? Hmmmm dunno .... i think not ....