Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
I=1.48 A
Explanation:
Given that
B=3.1 x 10⁻5 T
b= 4.2 cm
l= 9.5 cm
The relationship for magnetic field and current given as
Where
By putting the values
D=26.03 m⁻¹
I=1.48 A
Answer:
<h2>3.3 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 1.5 × 10 × 0.22
We have the final answer as
<h3>3.3 J</h3>
Hope this helps you
Newton's motion laws state that if an object is at rest or in movement, it will tend to maintain its basal state.
<h3>What are Newton's motion laws?</h3>
Newton's motion laws are a set of scientific statements aimed at explaining the physical property of movement.
These laws explain why objects in movement tend to maintain the same velocity for a short period of time.
In conclusion, Newton's motion laws state that if an object is at rest or in movement, it will tend to maintain its basal state.
Learn more about Newton's motion laws here:
brainly.com/question/10454047
#SPJ1
Answer:
W=315 x 10⁵ J
Explanation:
Given that
F= 2.5 x 10⁵ N
d= 90 m
K.E.=5.4 x 10⁷ J
We know that work done by all force is equal to the change in kinetic energy
Lets take work done by catapult is W
W + F.d= K.E.
W= 5.4 x 10⁷ - 2.5 x 10⁵ x 90 J
W= (540 - 25 x 9) 10⁵ J
W=315 x 10⁵ J