The measurements are:
b₁ = 8.4 inches; b₂ = 14 inches; leg₁ = 2.8 inches; leg₂ = 2.8 inches
Let x = length of base and leg
The formula for perimeter of isosceles trapezoid is P = b₁ + b₂ + 2(leg)
Where: b = base
P = b₁ + b₂ + 2(leg)
28 = 3x + 5x + 2(x)
28 = 8x + 2x
28/10 = 10x/10
2.8 = x
Now, substitute the values:
P = b₁ + b₂ + 2(leg)
28 = 3(2.8) + 5(2.8) + 2(2.8)
28 = 8.4 + 14 + 5.6
28 = 28
Hence the measurements are:
b₁ = 8.4 inches; b₂ = 14 inches; leg₁ = 2.8 inches; leg₂ = 2.8 inches
Answer:
90 or -270
Step-by-step explanation:
ANSWER:
x = 10 / 3
y = 0
STEP-BY-STEP EXPLANATION:
We will be using simultaneous equations to solve this problem. Let's first establish the two equations which we will be using.
Equation No. 1 -
- 6x - 14y = - 20
Equation No. 2 -
- 3x - 7y = - 10
First, we will make ( x ) the subject in the first equation and simplify accordingly.
Equation No. 1 -
- 6x - 14y = - 20
- 6x = - 20 + 14y
x = ( - 20 + 14y ) / - 6
x = ( - 10 + 7y ) / - 3
From this, we will make ( y ) the subject in the second equation and substitute the value of ( x ) from the first equation into the second equation to solve for ( y ) accordingly.
Equation No. 2 -
- 3x - 7y = - 10
- 7y = - 10 + 3x
- 7y = - 10 + 3 [ ( - 10 + 7y ) / - 3 ]
- 7y = - 10 + [ ( - 30 + 21y ) / - 3 ]
- 7y = - 10 + ( 10 - 7y )
- 7y = - 7y
- 7y + 7y = 0
0y = 0
y = 0
Using this, we will substitute the value of ( y ) from the second equation into the first equation to solve for ( x ) accordingly.
x = ( - 10 + 7y ) / - 3
x = [ - 10 + 7 ( 0 ) ] / - 3
x = [ - 10 + 0 ] / - 3
x = - 10 / - 3
x = 10 / 3
Let the speed of the current equal c
and the speed of the boat in still water equal b.
b + c = 1.5 (b - c)
b + c = 1.5b - 1.5c
0.5b = 2.5c
b = 5c
The speed of the current is 1.5 mph so
b = 5 * 1.5 = 7.5 mph
10 + 15x + x + 10
= 16x + 20