U=1/2kx2
This image sums it up
Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
Answer:f 30
Explanation: I am not really sure but try this
Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then
