Answer:

Explanation:
Hello there!
In this case, since the titration of acids like KHP with bases like NaOH are performed in a 1:1 mole ratio, it is possible for us to know that their moles are the same at the equivalence point, and the concentration, volume and moles are related as follows:

Thus, by solving for the volume of the base as NaOH, we obtain:

Best regards!
Answer:
As with the hydrogen-ion concentration, the concentration of the hydroxide ion can be expressed logarithmically by the pOH. The pOH of a solution is the negative logarithm of the hydroxide-ion concentration. pOH=−log[OH−] The pH of a solution can be related to the pOH.
Preparing 15 mg/gl working standard solution from a 20 mg/dl stock solution will require the application of the dilution principle.
Recalling the principle:
initial volume x initial molarity = final volume x final molarity
Since we were not given any volume to work with, we can as well just take an arbitrary volume to be prepared. Let's assume that the stock solution is 10 mL and we want to prepare 15 mg/gl from it:
Applying the dilution principle:
10 x 20 = final volume x 15
final volume = 200/15
= 13.33 mL
This means that in order to prepare 13.33 mL, 15 mg/l working standard solution from 10 ml, 20 mg/dl stock solution, 3.33 mL of the diluent must be added to the stock solution.
More on dilution principle can be found here: brainly.com/question/11493179
False, because a personal talent can be something such as your adaptability or ability to make friends, which cannot be displayed in a talent show.
An acid is a molecule or ion capable of either donating a proton, known as a acid, or, capable of forming a covalent bond with an electron pair, The first category of acids are the proton donors.