Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient =
where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
=
= -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s
Answer:
Condensation is the change of the physical state of matter from the gas phase into the liquid phase.
Absorbed photon energy
Ea = hc/λ.. (Planck's equation)
Ea = hc / 92.05^-9m
<span>Energy emitted
Ee = hc/ 1736^-9m </span>
Energy retained ..
∆E = Ea - Ee = hc(1/92.05<span>^-9 - 1/1736^-9) </span>
<span>∆E = (6.625^-34)(3.0^8) (1.028^7)
∆E = 2.04^-18 J </span>
<span>Converting J to eV (1.60^-19 J/eV)
∆E = 2.04^-18 / 1.60^-19
∆E = 12.70 eV </span>
<span>Ground state (n=1) energy for Hydrogen = - 13.60eV </span>
<span>New energy state = (-13.60 + 12.70)eV = -0.85 eV </span>
<span>Energy states for Hydrogen
En = - (13.60 / n²) </span>
n² = -13.60 / -0.85 = 16
n = 4
Explanation:
9.0122 g be Maybe, sorry i don't think so