<span>When M(OH)2 dissolves we have
M(OH)2 which produces M2+ and 2OHâ’
pH + pOH=14
At ph =7; we have
7+pOH=14
pOH=14â’7 = 7
Then [OHâ’]=10^(â’pOH)
[OH-] = 10^(-7) = 1* 10^(-7)
At ph = 10. We have,
pOH = 4. And [OH-] = 10^(-4) = 1 * 10^(-4)
Finally ph = 14. We have, pOH = 0
And then [OH-] = 10^(-0) -----anything raised to zero power is 1, but (-0)...
So [OH-] = 1</span>
11 with pemdas, you have to multiply all by 3
A set of attainable values for some physical quantity such as energy or wavelength
Answer:
There are 0,89 moles of nitrous oxide gas in the balloon.
Explanation:
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT ---> n= PV/RT
n= 1,09 atm x 20,0 L /0.082 l atm / K mol x 298 K
<em>n= 0,89212637 mol</em>
A risk-benefit analysis compares the risks and benefits of a situation and determines whether the advantages outweigh the disadvantages.
<h3>What is Risk-benefit analysis in technology?</h3>
Strengths
Risk-benefit analysis calculates the amount of time will be worth it to the production of technology and whether the technology will have a healthy impact on the industry or not.
Weaknesses
Risk-benefit analysis cannon determine product implementation and the outcomes of real life experiences of individual customers. It has some drawbacks like benefits of customer is take under consideration but pollution in nature is not calculated.
Implication
Risk-benefit analysis is implied in almost all technical industry as it the decision maker of any developing team to work on a particular project or not. Some examples are automobile industry and smartphone industry.
Learn more about risk-benefit analysis
brainly.com/question/28590994
#SPJ9