To solve this problem we will start from the definition of Force, as the product between the electric field and the proton charge. Once the force is found, it will be possible to apply Newton's second law, and find the proton acceleration, knowing its mass. Finally, through the linear motion kinematic equation we will find the speed of the proton.
PART A ) For the electrostatic force we have that is equal to

Here
q= Charge
E = Electric Force


PART B) Rearrange the expression F=ma for the acceleration

Here,
a = Acceleration
F = Force
m = Mass
Replacing,


PART C) Acceleration can be described as the speed change in an instant of time,

There is not
then

Rearranging to find the velocity,



Answer:
Nima and Natasha are absolutely correct.
Explanation:
When connecting two resistors in series, their resistances add:

which means that whenever we add a resistance in series, their magnitudes will add, giving us a resistance that is greater than the original resistance, which will demand less current from the battery because of ohm's law:

So, the greater the resistance, the smaller the current.
When connecting two resistors in parallel, the reciprocal of ther resistances add:

or

The equivalent resistance will always be less than the smallest resistor in the circuit, so the equivalent resistance will always decrease as more resistors are added. A decrease in the resistance means that the current will increase.
<span>You need to find the path difference. That is, how much further must sound waves from the more distant speaker travel than the close speaker, to reach the mike.
Use Pythagoras to find the distance of the further speaker: it is √(2.00²+4.50²)=4.924m so the path difference is 4.924-4.50=0.424m.
You will get constructive interference when this path difference is an integer number of wavelengths, because the waves will arrive at the mike in phase.
The speed of sound is 340m/s so the lowest frequency that will produce an antinode at the mike is the one that makes 0.424=λ
v=fλ so f=v/λ
f=340/0.424=801Hz.
The next one will be when 0.424m = 2λ => λ=0.212m
f=340/0.212=1602Hz
and so-on according to f=340n/0.424 where n is an integer.
For destructive interference the path difference must be (n-½)λ because that will make the waves arrive at the mike 180° out of phase.
f=340(n-½)/0.424</span>
I think it is A.. but then again im not sure