Answer:
4.47 m/s.
Explanation:
distance traveled, d = 10 miles
time, t = 1 hour
Speed of the runner, v = d / t
Speed of the runner = 10 miles / 1
Speed of the runner = 10 mph
1 mph ----------------------- 0.44704 m/s
10 mph -----------------------?
= 4.47 m/s
Thus, in 2 hours the distance traveled will change but the speed it still 10 mph or 4.47 m/s.
the answer should be:
When the buoyant force is equal to the force of gravity
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
(a) If the cornea were simply thin lens then power will be 43 diopters.
(b) This is a concave lens
The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Despite injury or disease, the cornea can still repair itself quickly. However, there are situations where damage is too severe for the cornea to heal on its own – such as with a deep injury to the cornea. The following symptoms may indicate that the cornea has sustained a substantial infection, injury or disease: Blurred vision Pain Redness.
Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power. In humans, the refractive power of the cornea is approximately 43 diopters.
There are two types of lenses: converging and diverging and here if the cornea was simply thin then the diverging or concave lens is used in the eyes which is thin in the center than their edges.
To know more about cornea, refer: brainly.com/question/13866057
#SPJ4