1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
7

Can someone please help me with this question

Mathematics
1 answer:
zlopas [31]3 years ago
7 0

Answer:

15 kilometers

Step-by-step explanation:

So we know:

For 4 days she runs 1500 meters each day.

For 3 days she runs 3 kilometers each day.

First off, lets convert 1500 meters into kilometers.

There are 1000 meters in a kilometer, so pluggin in 1500 meters:

1500/1000 = 1.5

So for 4 days she runs 1.5 kilometers each day.

Now, to find the total kilometers, we must find multiply the 1.5 kilometers by the 4 days, the 3 kilometers by the 3 days, then add those two together.

So lets do this:

1.5*4 = 6

So she ran 6 kilometers in the first 4 days.

Next we have:

3*3 = 9

So she ran 9 kilometers in the last 3 days.

Now finally add them together:

6 + 9 = 15

So she ran a total of 15 kilometers.

Hope this helps!

You might be interested in
11. What method can be used to prove these two triangles are congruent?
zubka84 [21]
This would be SAS. If that’s wrong I’m sorry but it’s the only thing that makes sense, the dashes indicate they are the same and then the circle at the point also indicates that they’re the same so you have two sides and one angle that are the same, so it should be SAS.
5 0
2 years ago
Which statement best applies to the slope of the line
Anastaziya [24]
Rise over run change in y/change in x
6 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
1+1=<br> 2+2= <br> 2 and 3<br> freee
Mila [183]
<h2><u><em>Question- 1 + 1</em></u></h2><h2><u><em>Answer 2</em></u></h2><h2><u><em>Question 2+2 </em></u></h2><h2><u><em>Answer-4 </em></u></h2><h2><u><em>Question- 2+3</em></u></h2><h2><u><em>Answer- 5</em></u></h2>
8 0
2 years ago
Read 2 more answers
You spend 8 hours each weekday at school.
pickupchik [31]

Answer:

8/24 (eight hours at school out of 24 hours of the day)

0.33 (divide 8 by 24)

33.33% (move the decimal to the right twice.)

I hope that makes sense. If you need more explanation please just comment on this and i will edit it to add what you need. Or i will just comment back. It depends.

4 0
2 years ago
Other questions:
  • Tom opens a bank account and makes an initial deposit of $15,000. The banker tells Tom that he is going to receive an annual rat
    15·1 answer
  • ???????????????????????????
    5·1 answer
  • A picture measuring 2.5 inch high by 6 in wide is to be enlarged so that the width is now 18 in how tall will the picture be
    8·1 answer
  • Find the measure of LaTeX: aa and LaTeX: b\:bin the diagram below.
    12·2 answers
  • Johanna used tiles to build a rectangler array with an array with an areavof 54.list all the possible dimensions of the array
    11·1 answer
  • please help me answer this question Solve: y − x = 12 y + x = -26 (19, -7). (-7, 1). (7, 19). (-19, -7).
    9·1 answer
  • You paint one third of a wall and one for seven hours at that rate how long will it take you to paint one wall
    5·2 answers
  • N + 4y + 5n + 3y What is the answer?
    8·1 answer
  • Can someone help me with this question 2x+3=15 is x
    11·2 answers
  • Please help me click the picture to see
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!