A maxm speed of 55 mph means that the speed has to be lexx than or equal to 55
x <= 55
Answer:
The atomic mass
Step-by-step explanation:
The decimal at the bottom of an element represents how much one atom of that element weighs.
Answer: 1/4 is the answer
Step-by-step explanation: it is 1/4 because 25/100 = 1/4
may i have brainiest plz i have like 1 or something
Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.
