Answer:
t=4.86s
Explanation:
To find the wavelength you use the following formula:

v: speed of sound = 343m/s
f: frequency = 400Hz
λ: wavelength of the sound
By doing λ the subject of the formula and replacing the values of f and v you obtain:

Now, to calculate the time that sound takes to reach the last row you use:

t: time
d: distance to the last row = 1947m

hence, the time is 4.86s
Answer:
Nitrogen is N, neon is Ne
Well they could go down a hill to gain more kinetic energy.
Answer:
x₂ = 1.33 m
Explanation:
For this exercise we must use the rotational equilibrium condition, where the counterclockwise rotations are positive and the zero of the reference system is placed at the turning point on the wall
Στ = 0
W₁ x₁ - W₂ x₂ = 0
where W₁ is the weight of the woman, W₂ the weight of the table.
Let's find the distances.
Since the table is homogeneous, its center of mass coincides with its geometric center, measured at zero.
x₁ = 2.5 -1.5 = 1 m
The distance of the person is x₂ measured from the turning point, at the point where the board begins to turn the girl must be on the left side so her torque must be negative
x₂ =
let's calculate
x₂ =
x₂ = 1.33 m
Answer:
microwaves
Explanation:
microwaves do emit radiation, technically speaking, but it's not the DNA-damaging radiation we're used to hearing about. Microwaves, along with radio waves from (you guessed it) radio and cell phone towers, are types of non-ionizing radiation.