1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
9

A ball is dropped from the roof of a 25-m-tall building. What is the velocity of the object when it touches the ground? Suppose

the ball is a perfect golf ball and it bounces such that the ve locity as it leaves the ground has the same magnitude but the op posite direction as the velocity with which it reached the ground How high will the ball bounce? Now suppose instead that the ball bounces back to a height of 20 m. What was the velocity with which it left the ground?
Physics
1 answer:
Wewaii [24]3 years ago
3 0

Answer:

a)  h=25m

b)  v=19.8m/sec

Explanation:

From the question we are told that:

Height h=25m

Bounce Height h'=20m

Generally the Kinematic equation is mathematically given by

V=\sqrt{2gh}\\\\V=\sqrt{2*9.81*25}

V=22.1m/sec

Therefore Height

h=\frac{V^2}{2g}\\\\h=\frac{22.1^2}{2*9.81}

h=25m

b)

Generally the Kinematic equation is mathematically given by

v^2=2ah

v^2=2*9.8*20

v=\sqrt{2*9.8*20}

v=19.8m/sec

You might be interested in
What happened to the speed of light if it travels from air into glass?
Ghella [55]

Answer:

it will disperse into many different colors

6 0
3 years ago
Read 2 more answers
HEEELLPPPP ME LLELLLLEEAASEEEEEEEEEEEE
irina [24]

Answer:

Valley-river Landslide-Gravity Frost wedging- Glacier Canyon-Ice.

Explanation:

I think that's right

4 0
3 years ago
The gravitational force,F, on a rocket at a distance,r, from the center of the earth isgiven byF=kr2wherek= 1013N·km2. (Newton·k
Brrunno [24]

Answer:

The gravitational force changing velocity is

\frac{dF}{dt}=-8\frac{N}{s}

Explanation:

The expression for the gravitational force is

F=\frac{k}{r^{2}}\\\\k=10x10^{13} N*km^{2}\\\\r=10x10^{4} km\\\\V=0.4 \frac{km}{s}

Differentiate the above equation

\frac{dF}{dt}=\frac{k}{r^{2}}\\\frac{dF}{dt}=k*r^{-2}\\\frac{dF}{dt}=-2*k*r^{-3} \frac{dr}{dt}\\\frac{dF}{dt}=\frac{-2k}{r^{3}}\frac{dr}{dt}

The velocity is the distance in at time so

V=\frac{dr}{dt}=0.4 \frac{km}{s}

\frac{dF}{dt}=\frac{-2*k}{r^{3}}*0.4\\\frac{dF}{dt}=\frac{-8*10x^{13}N*km^{2} }{(10x10^{4}) ^{3}} \\\frac{dF}{dt}=\frac{-8x10^{12} }{1x10^{12}}

\frac{dF}{dt}=-8\frac{N}{s}

8 0
3 years ago
On what two properties of a material does its density depend on?
ExtremeBDS [4]
Density of a material depends upon it's mass & volume.

You can calculate it by: Density = Mass / Volume

Hope this helps!
4 0
3 years ago
A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,
Maru [420]

Answer:

a) Coefficient of kinetic friction between block and surface = 0.12

b) Decrease in kinetic energy of the bullet = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = 0.541 J

Explanation:

Given,

Mass of bullet = 4.00 g = 0.004 kg

Initial velocity of the bullet = 400 m/s

Mass of wooden block = 0.65 kg

Initial velocity of the wooden block = 0 m/s (since it was initially at rest)

Final velocity of the bullet = 190 m/s

Distance slid through by the block after the collision = d = 72.0 cm = 0.72 m

Let the velocity of the wooden block after collision be v

According to the law of conservation of momentum,

Momentum before collision = Momentum after collision

Momentum before collision = (Momentum of bullet before collision) + (Momentum of wooden block before collision)

Momentum of bullet before collision = (0.004×400) = 1.6 kgm/s

Momentum of wooden block before collision = (0.65)(0) = 0 kgm/s

Momentum after collision = (Momentum of bullet after collision) + (Momentum of wooden block after collision)

Momentum of bullet after collision = (0.004×190) = 0.76 kgm/s

Momentum of wooden block after collision = (0.65)(v) = (0.65v) kgm/s

Momentum balance gives

1.6 + 0 = 0.76 + 0.65v

0.65v = 1.6 - 0.76 = 0.84

v = (0.84/0.65)

v = 1.29 m/s

The velocity of the wooden block after collision = 1.29 m/s

To obtain the coefficient of kinetic friction between block and surface, we will apply the work-energy theorem.

The work-energy theorem states that the work done in moving the block from one point to another is equal to the change in kinetic energy of the block between these two points.

The points to consider are the point when the block starts moving (immediately after collision) and when it stops as a result of frictional force.

Mathematically,

W = ΔK.E

W = workdone by the frictional force in stopping the wooden block (since there is no other horizontal force acting on the block)

W = -F.d (minus sign because the frictional force opposes motion)

d = Distance slid through by the block after the collision = 0.72 m

F = Frictional force = μN

where N = normal reaction of the surface on the wooden block and it is equal to the weight of the block.

N = W = mg

F = μmg

W = - μmg × d = (-μ)(0.65)(9.8) × 0.72 = (-4.59μ) J

ΔK.E = (final kinetic energy of the block) - (initial kinetic energy of the block)

Final kinetic energy of the block = 0 J (since the block comes to a rest)

(Initial kinetic energy of the block) = (1/2)(0.65)(1.29²) = 0.541 J

ΔK.E = 0 - 0.541 = - 0.541 J

W = ΔK.E

-4.59μ = -0.541

μ = (0.541/4.59)

μ = 0.12

b) The decrease in kinetic energy of the bullet

(Decrease in kinetic energy of the bullet) = (Kinetic energy of the bullet before collision) - (Kinetic energy of the bullet after collision)

Kinetic energy of the bullet before collision = (1/2)(0.004)(400²) = 320 J

Kinetic energy of the bullet after collision = (1/2)(0.004)(190²) = 72.2 J

Decrease in kinetic energy of the bullet = 320 - 72.2 = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = (1/2)(0.65)(1.29²) = 0.541 J

Hope this Helps!!!

4 0
3 years ago
Other questions:
  • If this atom has a balanced charged, how many protons would you expect to find in this atom?
    11·2 answers
  • Visible light is a range of _____ energy EM waves in the electromagnetic spectrum that the human eye can see. A. zero B. high C.
    15·2 answers
  • Need help in General Science II please help FAST!!!!!!!!!!!!!!!!!!
    7·1 answer
  • The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be
    12·1 answer
  • A charge of 4.5 × 10-5 C is placed in an electric field with a strength of 2.0 × 104 . If the charge is 0.030 m from the source
    9·1 answer
  • an aircraft has a liftoff speed of 53 m/s. what is the minimum constant acceleration an airplane must have to reach that takeoff
    14·1 answer
  • A 10 N force and an 18 N force act in the same direction on an object. What is the net force on the object?
    14·1 answer
  • A flywheel with radius of 0.300 m starts from rest and accelerates with a constant angular acceleration of 0.400 rad/s2.For a po
    14·1 answer
  • Bru this was a challenge
    9·2 answers
  • Briefly discuss why the use of general intelligence testing has declined in personnel selection.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!