Answer:
A) 26V
Explanation:
(a) the potential difference between the plates
Initial capacitance can be calculated using below expresion
C1= A ε0/ d1
Where d1= distance between = 2.70 mm= 2.70× 10^-3 m
ε0= permittivity of space= 8.85× 10^-12 Fm^-1
A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2
If we substitute the values we
C1= A ε0/ d1
=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3
C1=2.589 ×10^-12 F= 2.59 pF
Initial charge can be determined using below expresion
q1= C1 × V1
V1=2.589 ×10^-12 F
V1= voltage=7.90 V
If we substitute we have
q1= 2.589 ×10^-12 × 7.90
q1= 20.45×10^-12C
20.45 pC
Final capacitance can be calculated as
C2= A ε0/ d2
d2=8.80 mm= /8.80× 10^-3
7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3
C1=0.794 ×10^-12 F= 0.794 pF
Final charge= initial charge
q2=q1 (since the battery is disconnected)
q2=q1= 20.45 pC
Final potential difference
V2= q/C2
= 20.45/0.794
= 26V
Answer: A)30V. First find the current of the circuit. I=V/R(total resistance). So I=60/120=0.5. Now to find voltage drop in R3 use ohms law as given. V(of 3)=(0.5)(60)=30V
The related concept to solve this exercise is given in the expressions that the magnetic field has both as a function of the number of loops, current and length, as well as inductance and permeability. The first expression could be given as,
The magnetic field H is given as,

Here,
n = Number of turns of the coil
I = Current that flows in the coil
l = Length of the coil
From the above equation, the number of turns of the coil is,

The magnetic field is again given by,

Where the minimum inductance produced by the solenoid coil is B.
We have to obtain n, that

Replacing with our values we have that,



Therefore the number of turn required is 28Truns
Answer:
14.8 m
Explanation:
S= ut +
a
where u = initial velocity
S= (0
)(2
) +
(7.4
)(2
)
S=
(7.4
)(2
)
S=14.8 m
Answer:
D. from a separate pool than is the control group.
Explanation:
in the picture the person answers is backwards but...
hope this helps have a nice day