Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have

The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)
Answer: 1.76 Nm
Explanation:
If the force pulls horizontally, this means that the force is tangent to the disk at any point of the string unwinding process, so the distance d is irrelevant.
In this case, the torque is directly given by the product of the force times the distance perpendicular to the center of the disk, which is just the radius, as follows:
τ = F * r = 16 N. (0.11) m = 1.76 Nm
The force applied to an object is said to be a product of its mass and the acceleration. For this case, acceleration is the reading on the gravitometer. We calculate as follows:
F = mg
39.36 N = m(9.83 m/s^2)
m = 4.00 kg
Hope this answers the question. Have a nice day.