Answer:
I=0.0361 kg.m^2
Explanation:
Torque is the rotational equivalent of a force
Torque= perpendicular distance r X Force F
Torque T = I(moment of inertia) X α (angular acceleration)
T= Iα
r= 0.0285m
F= 1.9 x 10^3
T=0.0285 x 1.9 x 10^3
T= 54.15Nm
I=T/α
I=54.15/150
I=0.361 kg.m^2
A is pulling the block straight down toward the center of the Earth, no matter what the slope of the plane may be. A is the force of gravity.
The directions of B and C both depend on the slope of the plane.
B is a force that's parallel to the plane, pulling the block UP the plane. B is the force of friction.
C is a force perpendicular to the plane, preventing the block from falling down through the plane. C is the normal force.
Velocity of an object is its rate of change of the object's position per interval of time. Velocity is a vector quantity which means that it consists of a magnitude and a direction. Magnitude is represented by the speed and the direction is represented by the angle. To determine the velocity components, we use trigonometric functions to determine the angle of the components. For the north component we, use the sine function while, for the west component, we use the cosine function. We calculate as follows:
north velocity component = (16.8 m/s) (sin 54°) = 16.4 m/s
<span>west velocity component = (16.8 m/s) (cos 54°) = 3.49 m/s</span>
Energy flows with kinetic energy