Answer:
The magnification is 
Explanation:
From the question we are told that
The power of the lens is 
Generally 
The object distance is
the negative sign is because the distance is measured in the opposite direction of incident light (i.e away )
Generally the focal length is mathematically represented as
=>
=> 
converting to cm
=> 
Generally from lens equation we have that

=> 
=> 
Generally the magnification is mathematically represented as

=> 
=> 
Answer:
The answer is 10Nm
Explanation: I ended up just messing around with the numbers, I multiplied 5 and 2 got 10 as my answer and it was right.
Answer:

Explanation:
m = Mass of object = 
mg = Weight of object = 20 N
g = Acceleration due to gravity = 
v = Final velocity = 15 m/s
u = Initial velocity = 0
d = Distance moved by the object = 150 m
= Angle of slope = 
f = Force of friction
fd = Work done against friction
The force balance of the system is

The work done against friction is
.
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)