1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delicious77 [7]
3 years ago
13

A small logo is embedded in a thick block of crown glass (n = 1.52), 4.70 cm beneath the top surface of the glass. The block is

put under water, so there is 1.70 cm of water above the top surface of the block. The logo is viewed from directly above by an observer in air. How far beneath the top surface of the water does the logo appear to be?

Physics
1 answer:
harkovskaia [24]3 years ago
3 0

The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

d'w = d_w (\frac{n_{air}}{n_w})+d_g (\frac{n_{air}}{n_g})

Where,

d_g = Depth of glass

n_w = Refraction index of water

n_g = Refraction index of glass

n_{air} = Refraction index of air

d_w = Depth of water

I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to

d'w = d_w (\frac{n_{air}}{n_w})+d_g (\frac{n_{air}}{n_g})

d'w = (1.7cm) (\frac{1}{1.33})+(4.2cm)(\frac{1}{1.52})

d'w = 4.041cm

Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm

You might be interested in
PLz hlp me!!!! ASAP Will mark brainliest
Troyanec [42]

Answer:

hurricane

Explanation:

5 0
3 years ago
Read 2 more answers
In midair in the international space station a 1 kg chunk of putty moving at 1 m/s collides with and sticks to a 5 kg chunk of p
Delicious77 [7]
<span>We know that the momentum keeps constant in a inelastic collisions, so the product of mass and speed do not change:
   m1 * v1 + m2 * v2 = m * v
 1 * 1 + 5 * 0 = (1 + 5) * v
  1 = 6 * v
 v = 1/6 m/s
   So the final speed of the 6 kg chunk will travel at 0.167 m/s</span>
6 0
3 years ago
Bolt starts the race not moving, but then increased his speed until he reaches a top speed. Once Bolt reaches his top speed he m
LekaFEV [45]

Answer:

a

Explanation:

<u>In order to maintain speed, a moving object or person must move at a constant velocity</u>. Accelerating will increase the speed while decelerating will reduce the speed.

Hence, for Bolt to be able to maintain the top speed for a few seconds, he needs to move at a constant velocity.

The correct option is a.

7 0
3 years ago
I stretch a rubber band and "plunk" it to make it vibrate in its fundamental frequency. I then stretch it to twice its length an
Nikitich [7]

Answer:

The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)

Explanation:

Fundamental frequency = wave velocity/2L

where;

L is the length of the stretched rubber

Wave velocity = \sqrt{\frac{T}{\frac{M}{L}}}

Frequency (F₁) = \frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}

To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.

Given:

L₂ =2L₁ = 2L

T₂ = 2T₁ = 2T

(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)

F₂ = \frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1

Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).

7 0
3 years ago
A spring with spring constant 450 N/m is stretched by 12 cm. What distance is required to double the amount of potential energy
snow_lady [41]

Answer:

<em> The distance required = 16.97 cm</em>

Explanation:

Hook's Law

From Hook's law, the potential energy stored in a stretched spring

E = 1/2ke² ......................... Equation 1

making e the subject of the equation,

e = √(2E/k)........................ Equation 2

Where E = potential Energy of the stretched spring, k = elastic constant of the spring, e = extension.

Given: k = 450 N/m, e = 12 cm = 0.12 m.

E = 1/2(450)(0.12)²

E = 225(0.12)²

E = 3.24 J.

When the potential energy is doubled,

I.e E = 2×3.24

E = 6.48 J.

Substituting into equation 2,

e = √(2×6.48/450)

e = √0.0288

e = 0.1697 m

<em>e = 16.97 cm</em>

<em>Thus the distance required = 16.97 cm</em>

6 0
3 years ago
Other questions:
  • When a flying bug hits a moving train no effect is observed on the train because
    13·1 answer
  • Which would be the most reliable source of information about the weather?
    7·2 answers
  • Oxygenated hemoglobin absorbs weakly in the red (hence its red color) and strongly in the near infrared, whereas deoxygenated he
    10·1 answer
  • The diagram shows the process used in gene therapy.
    12·2 answers
  • Consider the following system, where F = 80 N, m = 1 kg, and M = 11 kg M m F What is the magnitude of the force with which one b
    5·1 answer
  • An electric field of 8.30 x 10^5 V/m is desired between two parallel plates, each of area 31.5 cm^2 and separated by 2.45 mm. Th
    13·1 answer
  • What is the wavelength of a wave?
    8·1 answer
  • 4. A weightlifter raises a mass mat a constant speed to a height h in time t. Which of the following
    10·1 answer
  • A locomotive with two carriages drives out of the station. The locomotive has a mass of 3.0 tonnes, and each of the two wagons h
    10·1 answer
  • Another 100 points time is running out this has to be correct! Correct answer gets brainiest! Hurry!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!