To calculate the number of atoms of Cr, we first find the number of moles per unit of cubic centimeter of Cr. Then, use avogadros number for the number of atoms. Calculations are as follows:
1 cm^3 (7.15 g/cm^3) (1 mol / 51.996 g Cr) = 0.14 mol Cr
0.14 mol Cr ( 6.022 x 10^23 atoms Cr / 1 mol Cr ) = 8.28 x 10^22 atoms Cr
In comparison with liquids and gases, solids are more dense. The answer is letter B. <span>The
solid has a more definite shape and volume. The particles are locked into
place. It cannot be further compressed due to the bond that exists between the
molecules. The kinetic energy of the molecules is close to none because the
molecules are so close and so compact with each other. </span>
Answer:
They all need to use each other to function?
Explanation:
Natural selection are positive traits, mutation is radioactive, and adaption is when natural selection works.
The answer is true. It is the last star.
CH3 is the empirical formula for the compound.
A sample of a compound is determined to have 1.17g of Carbon and 0.287 g of hydrogen.
The number of atom or moles in the compound is
1.17 g C X 1 mol of C / 12.011 g C = 0.097411 mol of C.
0.287 g H x 1 mol of H / 1 g H = 0.28474 mol H.
This compound contains 0.097411 mol of carbon and 0.28474 mol of Hydrogen.
So we can represent the compound with the formula C0.974H0.284.
Subscripts in formulas can be made into whole numbers by multiplying the smaller subscript by the larger subscript.
we can divide 0.284 by 0.0974.
0.284 / 0.0974 = 3.
So here, Carbon is one and hydrogen is 3.
We can write the above formula as a CH3.
Hence the empirical formula for the sample compound is CH3.
For a detailed study of the empirical formula refer given link brainly.com/question/13058832.
#SPJ1.