Answer:
This is as a result that about the central axis a collapsed hollow cone is equivalent to a uniform disc
Explanation:
The integration of the differential mass of the hollow right circular cone yields
![I=\int\limits dmr^2 = \int\limits^a_b {\frac{2Mxr^2}{R^2 +H^2} } \, dx = \frac{2MR^2dx}{(R^2 +H^2)^2} \frac{(R^2 +H^2)^2}{4} = \frac{1}{2}MR^2](https://tex.z-dn.net/?f=I%3D%5Cint%5Climits%20%20%20dmr%5E2%20%3D%20%5Cint%5Climits%5Ea_b%20%7B%5Cfrac%7B2Mxr%5E2%7D%7BR%5E2%20%2BH%5E2%7D%20%7D%20%5C%2C%20dx%20%20%3D%20%5Cfrac%7B2MR%5E2dx%7D%7B%28R%5E2%20%2BH%5E2%29%5E2%7D%20%5Cfrac%7B%28R%5E2%20%2BH%5E2%29%5E2%7D%7B4%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7DMR%5E2)
and for a uniform disc
I = 1/2πρtr⁴ = 1/2Mr².
Answer:ok yes
Explanation:yes of course
Answer: 100 J
Explanation: 1/2 5 x 2^2 = 100
Hope this made any sense.