<h2>
Answer:53.63
</h2>
Explanation:
The equations of motion used in this question is 
When a object is projected horizontally from a sufficiently height,the x-component of acceleration remains zero because there is no force that drags the object in x direction.
But,due to gravity,the object accelerates downward at a rate of
.
In X-Direction,
Given that initial velocity=
=
Using
,

In Y-Direction,
Given that initial velocity=
=
Using
,



Answer:
the action of measuring something.
Answer:
Sam's and Abigail speeds before colliding were a. 12.34 m/s and b. 2.86 m/s, respectively. Their total kinetic energy was diminished by c. 1484.42 J, approximately
Explanation:
By conservation of momentum, we have

Writing for each direction at a time,

Their kinetic energy changed by

Explanation:
The force of the roller-coaster track on the cart at the bottom is given by :
, m is mass of roller coaster
Case 1.
R = 60 m v = 16 m/s

Case 2.
R = 15 m v = 8 m/s

Case 3.
R = 30 m v = 4 m/s

Case 4.
R = 45 m v = 4 m/s

Case 5.
R = 30 m v = 16 m/s

Case 6.
R = 15 m v =12 m/s

Ranking from largest to smallest is given by :
F>E>A=B>C>D
Answer:
Value that the spring constant k = 12Mg / h
Explanation:
According to 2nd law of Newton:
upward force of the spring= F
The weight of the elevator W = mg
F = Mg = M(5g)
==> F =6Mg.
As the spring is compressed to its maximum distance ie s,the maximum upward acceleration comes just , Hence
F =ks = 6Mg
==> s = 6Mg/k
We have gravitational potential energy turning into elastic potential of the spring as the elevator starts at the top some distance h from the spring, and undergoes a total change in height equal to h + s, so:
Mg(h+s) = 1/2ks2
And plugging in our expression for s:
Mg(h+6Mg/k)= 1/2k(6Mg / k)2
gh + 6M2g2/k = 1/2k(36M2g2 /k2)
Mgh +6M2g2/k = 1/2k(36M2g2 /k2)
gh + 6Mg2/k = 18Mg2 / k
gh = 12Mg2 / k
h = 12Mg / k
k = 12Mg / h