1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
4 years ago
8

A basketball referee tosses the ball straight up for the starting tip-off. At what velocity (in m/s) must a basket ball player l

eave the grownd to rist 1.24 m above the floor in an attempt to get the ball?
Physics
1 answer:
mamaluj [8]4 years ago
7 0

Answer:4.93 m/s

Explanation:

Given

height to reach is (h )1.24 m

here Let initial velocity is u

using equation of motion

v^2-u^2=2ah

here Final Velocity v=0

a=acceleration due to gravity

0-u^2=2\left ( -g\right )h

u=\sqrt{2gh}

u=\sqrt{2\times 9.81\times 1.24}

u=\sqrt{24.328}

u=4.93 m/s

You might be interested in
Density is a physical property that relates the mass of a substance to its volume. A. Calculate the density, in g/mL , of a liqu
Angelina_Jolie [31]

Answer:

A) 0.660 g/ml

B) 1.297 ml

C) 0.272 g

Explanation:

Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes.  This is where density D appears as a  physical characteristic property of matter that establishes a relationship between the mass m of a body or substance and the volume V it occupies:

D=\frac{m}{V} (1)

Knowing this, let's begin with the answers:

<h2 /><h2>Answer A:</h2>

Here the mass is m=0.155g and th volume V=0.000235L=0.235mL

Solving (1) with these values:

D=\frac{0.155g}{0.235mL} (2)

D=0.660g/mL (3)

<h2>Answer B:</h2>

In this case the mass of a sample is m=4.71g and its density is D=3.63g/mL.

Isolating V from (1):

V=\frac{m}{D} (4)

V=\frac{4.71g}{3.63g/mL} (5)

V=1.297mL (5)

<h2>Answer C:</h2>

In this case the volume of a sample is V=0.293mL and its density is D=0.930g/mL.

Isolating m from (1):

m=D.V (6)

m=(0.930g/mL)(0.293mL) (7)

m=0.272g (8)

4 0
3 years ago
Read 2 more answers
The Nucleus of the Atom is in the center of the Atom, not in the outer rings &amp; orbitals.
chubhunter [2.5K]

Answer:

true

Explanation:

this the nucleus is located at the centre and contains protons and neutrons

3 0
3 years ago
Before you go.. Is there something I could've said to make your heart beat better?
Zinaida [17]

Answer:

no ... hahahha! but I know every boys wait for the day when their heart beat is faster than normal ever in life

7 0
3 years ago
Read 2 more answers
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
There are competitions in which pilots fly small planes low over the ground and drop weights, trying to hit a target. A pilot fl
nikdorinn [45]

Answer:

Also 3s.

Explanation:

Each component is independent in two dimensional motion. This means that <em>how much time does something take to reach the ground when dropped is independent from any horizontal velocity</em>. If at one run a drop lasts 3s, at another run with twice the (horizontal) velocity and same height will also last 3s, no matter what.

8 0
3 years ago
Other questions:
  • Please hurry need ASAP!!! When a pendulum swings, at which point is kinetic energy highest?
    9·1 answer
  • How can magnet be used to produce an electric current
    11·1 answer
  • The broom hocket fame helps you work on what skill?
    10·1 answer
  • What could be a possible explanation why tectonic plates do not all move in the same direction
    9·1 answer
  • A straight section of silver wire has a cross sectional area A=2.0 mm2. A total of 9.4×1018 electrons pass through the wire in 3
    5·1 answer
  • How can tectonic activity change the climate of the earth?
    12·1 answer
  • Eliza went for a swim. When she came out of the water, she felt cold. At the moment, a strong wind blew, and she felt even colde
    5·1 answer
  • An initially electrically neutral conducting sphere is placed on an insulating stand. A negatively-charged glass rod is brought
    9·1 answer
  • Write a use of reverberation
    14·1 answer
  • Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its te
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!