1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
9

A jet airliner moving initially at 889 mph

Physics
1 answer:
Eduardwww [97]3 years ago
8 0

Answer:

1500 mph

Explanation:

Take east to be +x and north to be +y.

The x component of the velocity is:

vₓ = 889 cos 0° + 830 cos 59°

vₓ = 1316.5 mph

The y component of the velocity is:

vᵧ = 889 sin 0° + 830 sin 59°

vᵧ = 711.4 mph

The speed is found with Pythagorean theorem:

v² = vₓ² + vᵧ²

v² = (1316.5 mph)² + (711.4 mph)²

v = 1496 mph

Rounded to two significant figures, the jet's speed relative to the ground is 1500 mph.

You might be interested in
11111111111111111111
Lady bird [3.3K]

Answer:

Explanation:

boiii

8 0
3 years ago
Read 2 more answers
Which form of energy is due to the movement of electrons?
Kruka [31]
Electrical Energy : b
3 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
What does the slope of a velocity-time graph reveal about an objects motion
Ivan

Answer:

The slope of a velocity graph represents the acceleration of the object. So, the value of the slope at a particular time represents the acceleration of the object at that instant.

3 0
3 years ago
Read 2 more answers
In September 2016 you purchased a 125 shares of Grainger stock for $224.84. It is now September 2019 and Grainger stock is curre
Temka [501]

Answer:

Gain in capital = $ 70.72

Explanation:

Given:

- The price of stocks when purchased P_o = $ 224.84

- The price of stocks when sold P_s = $ 295.56

Find:

what would be your capital gain (loss) on the sale, ignoring commissions

Solution:

- The capital gain or loss on the selling of stocks stems from the difference of buying and selling value of stocks. The original price of stock was P_o and the selling price would be P_s. The difference would be:

                             capital gain = P_s - P_o

                             capital gain =  $295.56 - $224.84

                             capital gain = $ 70.72

- Hence, there would be a gain in capital if sold today for about $ 70.72.

6 0
3 years ago
Other questions:
  • I need help on #9 (it's side ways sorry...)
    14·2 answers
  • Fog rolls in and bright headlights make it hard to see in the fog
    11·1 answer
  • If anyone could help.. im not the smartest​
    10·1 answer
  • Time period of a simple pendulum if it makes 40 oscillations in 20 seconds.
    14·1 answer
  • What is intermolecular forces and how is it related to phases of matter
    6·1 answer
  • A projectile is launched at an angle above the
    11·1 answer
  • The site<br> of proteins is called what
    5·2 answers
  • A phonograph record 0.15 m in its radius rotates 18 times per 90 seconds what is the frequency?
    12·1 answer
  • How to create or build a homemade golf club. is this possible? If so, what suggestion did you find? Do you have an original idea
    11·1 answer
  • Two large blocks of wood are sliding toward each other on the frictionless surface of a frozen pond. Block a has mass 4. 00 kg a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!