First we gotta use an equation of motion:
Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!
Now we just need to solve for t:
Hit the calculators, and you'll get 4.5 seconds!
260 volt is the answer i think
The complete question is;
A circular coil consists of N = 410 closely winded turns of wire and has a radius R = 0.75 m. A counterclockwise current I = 2.4 A is in the coil. The coil is set in a magnetic field of magnitude B = 1.1 T.
a. Express the magnetic dipole moment μ in terms of the number of the turns N, the current I, and radius
R.
b. Which direction does μ go?
Answer:
A) μ = 1738.87 A.m²
B) The direction of the magnetic moment will be in upward direction.
Explanation:
We are given;
The number of circular coils;
N = 410
The radius of the coil;R = 0.75m
The current in the coils; I = 2.4 A
The strength of magnetic field;
B =1.1T
The formula for magnetic dipole moment is given as;
μ = NIA
Where;
N is number of turns
I is current
A is area
Now, area; A = πr²
So, A = π(0.75)²
Thus,plugging in relevant values, the magnetic dipole moment is;
μ = 410 * 2.4 * π(0.75)²
μ = 1738.87 A.m²
B) According to Fleming's right hand rule, the direction of the magnetic moment comes out to be in upward direction.
3-m-high large tank is initially filled with water. The tank water surface is open to the atmosphere, and a sharp-edged 10-cm-diameter orifice at the bottom drains to the atmosphere through a horizontal 80-m-long pipe. If the total irreversible head loss of the system is determined to be 1.5 m, determine the initial velocity of the water from the tank. Disregard the effect of the kinetic energy correction factors.
Answer:
part A ⇒ u = 1.28 m
part B ⇒v = 0.43 m
Explanation:
for u is the distance to the object from the mirror and v is the distance from the mirror to the image.
Part A:
the mirror equation is given by:
1/f = 1/v + 1/u
but we told that, v = 1/3u:
1/f = 3/v + 1/u = 4/u
1/f = 4/u
f = u/4
u = 4f
= 4×(32×10^-2)
= 1.28 m
Therefore the distance from the mirror to the object is 1.28 m.
part B:
v = 1/3×u = 1/3×(1.28) = 0.43 m