Answer:
True
Explanation:
With the increase in temperature hypothalamus fails and heatstroke occurs due to this failure. Hypothalamus is the region of our brain that act as a thermostat. It co-ordinates our physiological response to excessive heat. When the person’s temperature reaches to 104 degrees then it causes heatstroke. This heatstroke is very sudden and can kill person. Hence, we can conclude that when person’s temperature reaches to 104 degrees chances of survival decreases dramatically.
Answer:
Opposite sides are congruent (AB = DC).
Opposite angels are congruent (D = B).
Consecutive angles are supplementary (A + D = 180°).
If one angle is right, then all angles are right.
The diagonals of a parallelogram bisect each other.
Each diagonal of a parallelogram separates it into two congruent triangles.
Explanation: #if you need any queshtions answered within secs/mins hit me up and I gotchu.
Answer:
option (B) is the correct option.
please thanks me and follow me
Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s
Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:
