Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
The related concept to solve this exercise is given in the expressions that the magnetic field has both as a function of the number of loops, current and length, as well as inductance and permeability. The first expression could be given as,
The magnetic field H is given as,

Here,
n = Number of turns of the coil
I = Current that flows in the coil
l = Length of the coil
From the above equation, the number of turns of the coil is,

The magnetic field is again given by,

Where the minimum inductance produced by the solenoid coil is B.
We have to obtain n, that

Replacing with our values we have that,



Therefore the number of turn required is 28Truns
14.136 J as shown on the photo with two thought processes but overall same calculation
Newton's third law of motion states that for every action there is an equal and opposite reaction. The balloon travels in the opposite direction as the air escaping from it. So when gas is released from the balloon it pushes against the outside air and the outside air pushes back. As a result of this the rocket is propelled forward by the opposing force. This opposing force is thrust.
Hope this helps!
Can u plz mark me as brainliest? I really need it!