1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
3 years ago
15

When beryllium-7 ions (m = 11.65 × 10-27 kg) pass through a mass spectrometer, a uniform magnetic field of 0.205 T curves their

path directly to the center of the detector, as in the drawing. For the same accelerating potential difference, what magnetic field should be used to send beryllium-10 ions (m = 16.63 × 10-27 kg) to the same location in the detector? Both types of ions are singly ionized (q = +e).
Physics
1 answer:
AysviL [449]3 years ago
5 0

Answer:

ratio =0.3075 T

Explanation:

The magnetic field B creates a force on a moving charge such that

F = qvB

Now this causes a centripetal acceleration

F =  = mv^2/r

 so

qvB = mv^2/r ...........(i)

B = mv/(rq)  ...............(ii)

If  accelerating potential V is  same and  then  kinetic energy equals the potential energy difference

\frac{1}{2} mv^2 = Vq

v = \sqrt{(2Vq/m)}      put these value in equation (ii)

B = m\frac{\sqrt{(2Vq/m)} }{rq}  

simplifying we get  

B =m \frac{(\sqrt{ 2Vm/q})}{r}

for same location r will be same in both case

B_{7} = \frac{ \sqrt{(m_{7})(2V/q) }}{r}      ..............(iii)

B_{10} = \frac{ \sqrt{(m_{10})(2V/q) }}{r}    ..........(iv)

 dividing (iv) and (iii) equation we get

\frac{B_{10}}{B_{7}}   =   \sqrt{\frac{m_{10}}{{m_7}} }

{B_{10}}  =  B_{7}  \sqrt{\frac{m_{10}}{{m_7}} }

B_{10}       = 0.2574T\sqrt{\frac{  (1.663x10^-26}{(1.165x10^-26)}

so on solving we get  

             =0.3075 T

You might be interested in
A person lowers a bucket into a well by turning the hand crank, as the drawing illustrates. The crank handle moves with a consta
dimulka [17.4K]

Answer:

0.453 m/s

Explanation:

Assuming the handle has diameter of 0.4 m while inner part diameter is 0.1 m then the circumference of outer part is \pi d_h where d is diameter and subscript h denote handle. By substituting 0.4 for the handle's diameter then cirxumference of outer part is \pi\times 0.4\approx 1.256 m

The rate of rotation will then be 1.81/1.256=1.441 rev/s

Similarly, circumference of inner part will be \pi d_i where subscript i represent inner. Substituting 0.1 for inner diameter then

\pi\times 0.1\approx 0.3142 m

The rate of rotation found for outer handle applies for inner hence speed will be 0.3142*1.441=0.453 m/s

7 0
3 years ago
Betty is six years old and often asks her parents many questions. Her parents respond to her questions however trivial they may
Brums [2.3K]

This behavior helps Betty in <u>intellectual  </u>development.

5 0
3 years ago
Read 2 more answers
How does the force of gravity between two bodies change when the distance between them doubles? 1. unable to determine; the mass
Rzqust [24]
6. Drop to one quarter of its original value
7 0
3 years ago
A ship travels with velocity given by 12, with current flowing in the direction given by 11 with respect to some co-ordinate axe
nataly862011 [7]

Answer:

v_x = 11.78 m/s

Explanation:

Velocity of the ship is given as

v = 12 units

the direction of the velocity of the ship is making an angle of 11 degree with the current

so we will have two components of the velocity

1) along the direction of the current

2) perpendicular to the direction of the current

so here we know that the component of the ship velocity along the direction of the current is given as

v_x = v cos\theta

v_x = 12 cos11

v_x = 11.78 m/s

7 0
3 years ago
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
Other questions:
  • A mining crew extracted two different types of minerals from underground. Then, they transferred the same amount of energy into
    11·2 answers
  • PLEASE HELP ME, I NEED THIS DONE AS SOON AS POSSIBLE.
    11·1 answer
  • Can someone help me plz<br>it's a glass bell jar and to vacuum pump
    13·1 answer
  • A river current has a velocity of 5 km/h relative to the shore. A boat moves in the same direction as the current at 4 km/h rela
    5·2 answers
  • A nylon string has a diameter of 2 mm pulled by a force of 100 Newton. Determine the stress?
    6·1 answer
  • A solenoid of length 10 cm has 247 turns and a magnetic field at the center of 1.2 T. What is the current through the solenoid?
    12·1 answer
  • Can you answer this question about work and force?
    6·1 answer
  • Deduced hydrochloric acid is a strong acid ​
    7·1 answer
  • Now write a short paragraph comparing "fast" to "speeding up quickly" and "slow" to "speeding up slowly".
    5·1 answer
  • 100 points right here first comr first serve. amos thejonah2016.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!