Answer:
Local action is removed by amalgamating zinc rod.
Explanation:
This prevents chemical reaction to occur because impurities in the zinc cannot get into contact with an electrolyte.
Answer:
h=15.27m
Explanation:
Since at maximum height the vertical velocity must be null it's better to use the formula:

We will use this formula for the vertical direction, choosing the upward direction as the positive one, so we have:

or

which for our values is:

Answer:
According to Newton's third law, for every action force there is an equal (in size) and opposite (in direction) reaction force. Together, these two forces exerted upon two different objects form the action-reaction force pair.
Explanation:
Sana makatulong ^_^
<span>Convert angstroms to nm for atom diameter
2.18/10=.218 nm. Divide diameter by length width and height.
63.6/.218=292
74.2/.218=327
275/.218=1261
Multiply these to get volume of atoms
120,037,500
Convert atoms to moles using Avogadro number
120,037,500/6.02*10^23=2*10^-16 moles</span>
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V