Answer:
No
Steps- two rang values exist for domain value -2
The function f(g(2)) is an illustration of a composite function
The value of f(g(2)) is 2
<h3>How to determine the value of the function f(g(2))?</h3>
Given:
The table of values for functions f(x) and g(x)
To calculate f(g(2)), we start by calculating g(2)
From the table;
g(2) = 6
So, we have:
f(g(2)) = f(6)
From the table;
f(6) = 2
So, we have:
f(g(2)) = 2
Hence, the value of f(g(2)) is 2
Read more about composite functions at:
brainly.com/question/10687170
Answer:
Step-by-step explanation:
Given that a curve in polar coordinates is given by:
r=9+3cosθ
a) At point P, we have

Substitute to get

b) Cartesian coordinate is

c) At the origin r =0
when r =0
we have

Since cos cannot take values as -3 it doe snot pass through origin.
Answer:

Using the frequency distribution, I found the mean height to be 70.2903 with a standard deviation of 3.5795
Step-by-step explanation:
Given
See attachment for class
Solving (a): Fill the midpoint of each class.
Midpoint (M) is calculated as:

Where
Lower class interval
Upper class interval
So, we have:
Class 63-65:

Class 66 - 68:

When the computation is completed, the frequency distribution will be:

Solving (b): Mean and standard deviation using 1-VarStats
Using 1-VarStats, the solution is:


<em>See attachment for result of 1-VarStats</em>
Answer:
About $20.30
Step-by-step explanation:
$466.90 divided by 23.