Answer:
4 moles
Explanation:
The formula of finding moles is
moles = mass / molar mass, therefore
moles = 160 g / 40 g/mol = 4 moles
Answer:
Mg²⁵ = 10.00%
Mg²⁶ = 45.04%
Mg²⁴ = 44.96%
Explanation:
Given data:
Atomic mass of Mg²⁶ = 25.983
Atomic mass of Mg²⁵ = 24.986
Atomic mass of Mg²⁴ = 23.985
Abundance of Mg²⁵ = 10.00%
Abundance of Mg²⁶ = ?
Abundance of Mg²⁴ = ?
Solution:
Average atomic weight of Mg = 25.983 + 24.986+ 23.985 / 3
Average atomic weight of Mg = 74.954/3
Average atomic weight of Mg = 24.985 amu
Abundance of
Mg²⁵ = 10.00
Mg²⁶ = x
Mg²⁴ = 100- 10 - x = 90 -x
Formula:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass) / 100
24.985 = (0.1×24.986)+(90-x×23.985) + ( x ×25.983 ) /100
24.985 = 249.86 + 2158.65 - 23.985x + 25.983x / 100
24.985 = 2408.51 + 1.998 x / 100
2498.5 = 2408.51 + 1.998 x
1.998 x = 2498.5 - 2408.51
1.998 x = 89.99
x = 89.99 /1.998
x = 45.04
Now we put the value of x:
Mg²⁵ = 10.00
Mg²⁶ = x (45.04)
Mg²⁴ = 90 -x (90 - 45.04 = 44.96)
Solution :
Time (sec) Volume of NaOH (mL)
339 26.23
1242 27.80
2745 29.70
4546 3.81
39.81
Now the example of the first order kinetics w.r.t volumetric analysis is :

Here, 

= volume at time 0 = 0
Since the interval is not constant, we take the time interval as


= 1402.3333
≈ 1402 seconds


= 0.001643 x 0.52045
= 0.00082

Therefore, the first order rate constant is k
.
D.) It cannot be broken down into a simple substance through chemical means...
N(C): N(H)=n(C): n(H)=6: 10
3×10²¹: x=6: 10
x=5×10²¹