Answer: If a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Explanation:
The relation between energy and wavelength is as follows.

This means that energy is inversely proportional to wavelength.
As it is given that energy of a hydrogen atom and a helium atom is same.
Let us assume that
. Hence, relation between their wavelengths will be calculated as follows.
... (1)
... (2)
Equating the equations (1) and (2) as follows.

Thus, we can conclude that if a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
X:5.8g=16:(23+1+12+3*16)
x:5.=16:84
x:=5.8* 16/84
this is approximately 1.1
Answer:
<em>Argon</em><em> </em><em>can</em><em> </em><em>exi</em><em>st</em><em> </em><em>freely</em><em> </em><em>in</em><em> </em><em>nature</em><em> </em><em>because</em><em> </em><em>it</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>full</em><em> </em><em>octet</em><em> </em><em>of</em><em> </em><em>electron</em><em>s</em><em> </em><em>the</em><em> </em><em>way</em><em> </em><em>its</em><em> </em><em>found</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>nature</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>way</em><em> </em><em>its</em><em> </em><em>found</em><em> </em><em>in</em><em> </em><em>periodic </em><em>table</em><em> </em><em>of</em><em> </em><em>element </em><em>in</em><em> </em><em>vast</em><em> </em><em>amouts</em><em> </em><em>of</em><em> </em><em>stabilization</em><em>.</em>
Answer:
Q= 245 =2.5 * 10^2
Explanation:
ΔG = ΔGº + RTLnQ, so also ΔGº= - RTLnK
R= 8,314 J/molK, T=298K
ΔGº= - RTLnK = - 6659.3 J/mol = - 6.7 KJ/mol
ΔG = ΔGº + RTLnQ → -20.5KJ/mol = - 6.7 KJ/mol + 2.5KJ/mol* LnQ
→ 5.5 = LnQ → Q= 245 =2.5 * 10^2
It would most likely be a molecular compound. A molecular compound contains two or more nonmetals.