Well, we usually assume that the resistance of a circuit component
is constant and doesn't change. But the truth is that for anything
that conducts current, its resistance always increases somewhat
when it warms up.
For things like light bulbs, electric toasters, space heaters, electric
stove burners, the heat coils in a blow-dryer ... anything that's
designed to be really hot when it's doing its job ... the resistance
of those things increases significantly when they come up to their
operating temperatures.
A) initial volume
We can calculate the initial volume of the gas by using the ideal gas law:

where

is the initial pressure of the gas

is the initial volume of the gas

is the number of moles

is the gas constant

is the initial temperature of the gas
By re-arranging this equation, we can find

:

2) Now the gas cools down to a temperature of

while the pressure is kept constant:

, so we can use again the ideal gas law to find the new volume of the gas

3) In a process at constant pressure, the work done by the gas is equal to the product between the pressure and the difference of volume:

by using the data we found at point 1) and 2), we find

where the negative sign means the work is done by the surrounding on the gas.
All of them have the same potential energy <span />
Answer:
Yes i am agree with this suggestion
Explanation:
Given that we have to assume that there is no any frictional affects.
As we know that when height increases then the discharge level will decreases when discharge level decreases then the time of filling for the bucket will increase.So the bucket will fill faster if the hose lowered until knee level.
Yes i am agree with this suggestion