Find the perimeter of the polygon with the vertices g(2, 4), h(2,−3), j(−2,−3), g(2, 4), h(2,−3), j(−2,−3), and k(−2, 4)k(−2, 4)
Julli [10]
<span>The distance between g and h is sqrt[(2-2)^2+(4+3)^2]=7
The distance between h and j is sqrt[(2+2)^2+(-3+3)^2]=4
The distance between j and k is sqrt[(-2+2)^2+(-3-4)^2]=7
The distance between k and g is sqrt[(-2-2)^2+(4-4)^2]=4
The perimeter of the polygon is 7+4+7+4=22</span>
The more appropriate measures of center and spread are:
- A. Better measure of spread: the interquartile range (IQR)
- B. Better measure of center: the median
<h3>Which measures are best for the given data?</h3>
The better measure of the middle would be the median because mean is affected by low and high values which are present in the given data set.
As mean is not being used, standard deviation should not be used for the same reason. This leaves us with the interquartile range which is best because it does not take outliers into account.
Find out more on the Interquartile Range at brainly.com/question/12568713.
#SPJ1
Answer:
![\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B3cos%282x%29%20-2%283x%20%2B%201%29%5Bsin%282x%29%20%2B%20cos%282x%29%5D%7D%7Be%5E%7B2x%7D%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Factoring
- Exponential Rule [Dividing]:

- Exponential Rule [Powering]:

<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Quotient Rule: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Trig Derivative: ![\displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%28u%29%5D%20%3D%20-u%27sin%28u%29)
eˣ Derivative: ![\displaystyle \frac{d}{dx}[e^u] = u'e^u](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Eu%5D%20%3D%20u%27e%5Eu)
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Differentiate</u>
- [Derivative] Quotient Rule:
![\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20%2B%201%29cos%282x%29%5De%5E%7B2x%7D%20-%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%283x%20%2B%201%29cos%282x%29%7D%7B%28e%5E%7B2x%7D%29%5E2%7D)
- [Derivative] [Fraction - Numerator] eˣ derivative:
![\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20%2B%201%29cos%282x%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7B%28e%5E%7B2x%7D%29%5E2%7D)
- [Derivative] [Fraction - Denominator] Exponential Rule - Powering:
![\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20%2B%201%29cos%282x%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] Product Rule:
![\displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20%2B%201%5Dcos%282x%29%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%282x%29%5D%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:
]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%281%20%5Ccdot%203x%5E%7B1%20-%201%7D%29cos%282x%29%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%282x%29%5D%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:
]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B3cos%282x%29%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%282x%29%5D%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:
![\displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B3cos%282x%29%20-2sin%282x%29%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] Factor:
![\displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Be%5E%7B2x%7D%5B%283cos%282x%29%20-2sin%282x%29%283x%20%2B%201%29%29%20-%202%283x%20%2B%201%29cos%282x%29%5D%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:

- [Derivative] [Fraction - Numerator] Factor:
![\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B3cos%282x%29%20-2%283x%20%2B%201%29%5Bsin%282x%29%20%2B%20cos%282x%29%5D%7D%7Be%5E%7B2x%7D%7D)
Topic: AP Calculus AB/BC
Unit: Derivatives
Book: College Calculus 10e
Answer:
The answer is the second option 4.8
Step-by-step explanation:
I just did the test.