The balanced chemical equation for the above reaction is as follows;
2LiOH + H₂SO₄ ---> Li₂SO₄ + 2H₂O
stoichiometry of base to acid is 2:1
Number of OH⁻ moles reacted = number of H⁺ moles reacted at neutralisation
Number of LiOH moles reacted = 0.400 M / 1000 mL/L x 20.0 mL = 0.008 mol
number of H₂SO₄ moles reacted - 0.008 mol /2 = 0.004 mol
Number of H₂SO₄ moles in 1 L - 0.500 M
This means that 0.500 mol in 1 L solution
Therefore 0.004 mol in - 1/0.500 x 0.004 = 0.008 L
therefore volume of acid required = 8 mL
Answer:
The answer to your question is pH = 1.45
Explanation:
Data
pH = ?
Volume 1 = 200 ml
[HCl] 1 = 0.025 M
Volume 2 = 150 ml
[HCl] 2 = 0.050 M
Process
1.- Calculate the number of moles of each solution
Solution 1
Molarity = moles / volume
-Solve for moles
moles = 0.025 x 0.2
result
moles = 0.005
Solution 2
moles = 0.050 x 0.15
-result
moles = 0.0075
2.- Sum up the number of moles
Total moles = 0.005 + 0.0075
= 0.0125
3.- Sum up the volume
total volume = 200 + 150
350 ml or 0.35 l
4.- Calculate the final concentration
Molarity = 0.0125 / 0.35
= 0.0357
5.- Calculate the pH
pH = -log [H⁺]
-Substitution
pH = -log[0.0357]
-Result
pH = 1.45
The answer is A, do you want me to explain it? It’s pretty simple, you just need to follow all the signs in brackets and match them in those in the answer
The periodic table is one of the most important tools in the history of chemistry. It describes the atomic properties of every known chemical element in a concise format, including the atomic number, atomic mass and relationships between the elements. Elements with similar chemical properties are arranged in columns in the periodic table.
The table thus is a quick reference as to what elements may behave the same chemically or which may have similar weights or atomic structures.
Hope this answer helps you