Answer:
3.48 seconds
Explanation:
At maximum height Vf=0 m/s
Vf= Vi - g*t
⇒g*t= Vi
⇒t= Vi/g
⇒t= 112/32.17 sec
⇒ t= 3.48 s
so the projectile will achieve its maximum height in 3.48 seconds.
Answer:
The sphere C carries no net charge.
Explanation:
- When brougth close to the charged sphere A, as charges can move freely in a conductor, a charge equal and opposite to the one on the sphere A, appears on the sphere B surface facing to the sphere A.
- As sphere B must remain neutral (due to the principle of conservation of charge) an equal charge, but of opposite sign, goes to the surface also, on the opposite part of the sphere.
- If sphere A is removed, a charge movement happens in the sphere B, in such a way, that no net charge remains on the surface.
- If in such state, if the sphere B (assumed again uncharged completely, without any local charges on the surface), is touched by an initially uncharged sphere C, due to the conservation of charge principle, no net charge can be built on sphere C.
Answer:
μ = 0.725
Explanation:
This problem refers to Newton's second law.
F = ma
Let's write the equations on each axis
Y Axis
N-W = 0
N = W
N = mg
X axis
F-fr = ma
With the body not started moving its acceleration is zero
F-fr = 0
F = fr
The friction force equation is
fr = μ N
fr = μ m g
Let's replace and calculate
F = μ m g
μ = F / mg
μ = 321 /45.2 9.8
μ = 0.725
Answer:
196000 N
Explanation:
The following data were obtained from the question:
Height (h) = 10 m
Area (A) = 2 m²
Force (F) =.?
Next, we shall determine the pressure in the tank.
This can be obtained as follow:
P = dgh
Where
P is the pressure.
d is the density of the liquid.
g is acceleration due to gravity
h is the height.
Height (h) = 10 m
Density (d) of water = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Pressure (P) =...?
P = dgh
P = 1000 × 9.8 × 10
P = 98000 N/m²
Therefore, the pressure acting on the tank is 98000 N/m²
Finally, we shall determine the force of gravity acting on the column of water as follow:
Area (A) = 2 m²
Pressure (P) = 98000 N/m²
Force (F) =.?
Pressure (P) = Force (F) /Area (A)
P = F /A
98000 = F/ 2
Cross multiply
F = 98000 × 2
F = 196000 N
Therefore, the force of gravity acting on the column of water is 196000 N