1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
3 years ago
5

A Yugo can accelerate from rest to a speed of 28 m/s in 20 s. What is the average acceleration of the car? What distance does it

travel in this time
Physics
1 answer:
harina [27]3 years ago
6 0

Answer:

Explanation:

a=28/20

a=1.4 m/s²

V²=v0²+2a.D

28²=0+2x1.4D

784 = 2.8D

D = 280 m

You might be interested in
Which of the following has to happen before the eardrum begins to vibrate with the same frequency as the source of the sound wav
777dan777 [17]
I just took the test it is D




I am 100% sure
8 0
3 years ago
Read 2 more answers
Tectonic plates move due to _____ forces.
wel
<span>Tectonic plates move because they are floating on top of the liquid mantle. The mantle itself moves due to convection currents: hot rock rises, gives off some heat, then falls. This creates vast swirls of moving liquid rock under the crust of the earth, which jostles the plates of crust on top.
</span>
6 0
3 years ago
Read 2 more answers
A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
gizmo_the_mogwai [7]

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

5 0
2 years ago
Two identical 7.10-gg metal spheres (small enough to be treated as particles) are hung from separate 700-mmmm strings attached t
nlexa [21]

Answer:

Explanation:

Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.

Let T be tension in the hanging string

T cosθ = mg ( for balancing in vertical direction )

for balancing in horizontal direction

Tsinθ = F ( F is force of repulsion between two charges sphere)

Dividing the two equations

Tanθ = F / mg

tan17 = F / (7.1 x 10⁻³ x 9.8)

F = 21.27 x 10⁻³ N

if q be charge on each sphere , force of repulsion between the two

F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17  = .41 m )

21.27 x 10⁻³  = (9 X 10⁹ x q²) / .41²

q² = .3973 x 10⁻¹²

q = .63 x 10⁻⁶ C

no of electrons required  = q / charge on a single electron

= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹

= .39375 x 10¹³

3.9375 x 10¹² .

4 0
4 years ago
In the 1920s what did Edmund hubble notice about the galaxies
zlopas [31]
Hubble noticed that the galaxies were moving away from us, which meant the universe was expanding.

This is why constellations change over time. In some years, the Big Dipper won't actually look like a dipper anymore.
5 0
3 years ago
Other questions:
  • A sample of fluorine-18 in a laboratory has an initial mass of 50mg.flourine-18 has a half life of 1.8 hours Calculate the amoun
    11·1 answer
  • what is the kinetic energy of an object that has mass of 30 kilograms and move with a velocity of 20 m/s
    7·1 answer
  • Isotopes of elements have different:
    5·2 answers
  • How does the gravitational force between two objects change if the distance
    9·1 answer
  • An outdoor Wi-Fi unit for a picnic area has a 110 mW output and a range of about 38 m. What output power (in mW) would reduce it
    12·1 answer
  • 1).which of the following describes the interaction between a south pole and a north pole of a magnet
    15·1 answer
  • PLS HELP MEEEE (NO LINKS PLEASE)
    5·2 answers
  • A standing wave has a frequency of 471 Hz and a wavelength of 1.9. What is the speed of the
    5·1 answer
  • Select the correct answer?
    15·1 answer
  • 5. A single slit illuminated with a 500 nm light gives a diffraction pattern on a far screen. The 5th minimum occurs at 7.00° aw
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!