Answer:
3.4 × 10^23 molecules
Explanation:
To find the number of molecules present in C6H14, we multiply the number of moles in the compound by Avagadro's number (6.02 × 10^23 atoms).
number of molecules = number of moles (mol) × 6.02 × 10^23?
Number of molecules = 0.565 × 6.02 × 10^23
3.4 × 10^23 molecules
Answer: Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
Explanation:
Nomenclature and common formula. When part of a salt, the formula of the acetate ion is written as CH3CO2−, C2H3O2−, or CH3COO−. Chemists abbreviate acetate as OAc− or, less commonly, AcO−. Thus, HOAc is the abbreviation for acetic acid, NaOAc for sodium acetate, and EtOAc for ethyl acetate.
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
Answer:
The answer is endothermic as the heat flows into the system from the surroundings. The products are at higher energy than the reactants, as they have absorbed energy.