Gas particles lose their energy during collisions
Answer:
See explanation below
Explanation:
You are missing the structure, therefore, I will do an example with one that I found on another place to try to explain.
This acid mechanism always involves carbocations, and positive charges, never negative because we are in acidic mediums.
In the first step, the lone pairs of the oxigen from the epoxide, substract one hydrogen of the reactant.
Second step, the lone pairs of the oxygen from the reactant, do a nucleophylic attack to the carbon of the epoxide. In this case, it will do it to the most substitued carbon.
Then, in the third step by acid base equilibrium, the hydrogen from the reactant that attacked, is substracted from the molecule by a molecule of water (We are in acid medium, therefore, there is traces of water) and the final structure is formed.
Check picture for mechanism:
Question 1 is A.) an oxbow lake
Question 2 is C.) pebble
Answer:
Option-D : They move freely in all directions.
Explanation:
The physical properties of gases are well explained by Kinetic Molecular Theory. The key postulates of this theory are;
1) Composition: Gases are made up of small particles called molecules. The size of these molecules is very small as compared to the distance between molecules, therefore the actual volume of molecules is taken negligible as compared to volume occupied by them.
2) Intermolecular Forces: All the gas molecules present in a container behaves independently because they have no force of interactions between them Hence, the attractive forces are taken negligible or too little.
3) Energies: Gas molecules have greater kinetic energy as compared to solids and liquids. Hence, The gas molecules move randomly. They collide with each other and with the walls of the container which causes pressure.
Conclusion:
Therefore, due to large spaces, no interactions, small sizes and high energies the gas particles move freely and there position is not stationary.
<h3>B</h3><h3>brainliest! These bases completely dissociate in solutions of 0.01 M or less. The other bases make solutions of 1.0 M and are 100% dissociated at that concentration. There are other strong bases than those listed, but they are not often.</h3>
Strong bases are bases which completely dissociate in water into the cation and OH- (hydroxide ion). The hydroxides of the Group I (alkali metals) and Group II (alkaline earth) metals usually are considered to be strong bases. These are classic Arrhenius bases. Here is a list of the most common strong bases.
LiOH - lithium hydroxide
NaOH - sodium hydroxide
KOH - potassium hydroxide
RbOH - rubidium hydroxide
CsOH - cesium hydroxide
*Ca(OH)2 - calcium hydroxide
*Sr(OH)2 - strontium hydroxide
*Ba(OH)2 - barium hydroxide